微積分 MA1002－A 上課筆記（精簡版） 2019．03．05．

Ching－hsiao Arthur Cheng 鄭經敘

Chapter 9

Infinite Series

9.1 Sequences

Definition 9.1: Sequence

A sequence of real numbers (or simply a real sequence) is a function $f: \mathbb{N} \rightarrow \mathbb{R}$. The collection of numbers $\{f(1), f(2), f(3), \cdots\}$ are called $\boldsymbol{t e r m s}$ of the sequence and the value of f at n is called the \boldsymbol{n}-th term of the sequence. We usually use f_{n} to denote the n-th term of a sequence $f: \mathbb{N} \rightarrow \mathbb{R}$, and this sequence is usually denoted by $\left\{f_{n}\right\}_{n=1}^{\infty}$ or simply $\left\{f_{n}\right\}$.

Example 9.2. Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be the sequence defined by $f(n)=3+(-1)^{n}$. Then f is a real sequence. Its terms are $\{2,4,2,4, \cdots\}$.

Example 9.3. A sequence can also be defined recursively. For example, let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be defined by

$$
a_{n+1}=\sqrt{2 a_{n}}, \quad d_{1}=\sqrt{2} .
$$

Then $a_{2}=\sqrt{2 \sqrt{2}}, a_{3}=\sqrt{2 \sqrt{2 \sqrt{2}}}$, and etc. The general form of a_{n} is given by

$$
a_{n}=2^{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}}=2^{\frac{2^{n}-1}{2^{n}}} .
$$

There are also sequences that are defined recursively but it is difficult to obtain the general form of the sequence. For example, let $\left\{b_{n}\right\}_{n=1}^{\infty}$ be defined by

$$
b_{n+1}=\sqrt{2+b_{n}}, \quad b_{1}=\sqrt{2}
$$

Then $b_{2}=\sqrt{2+\sqrt{2}}, b_{3}=\sqrt{2+\sqrt{2+\sqrt{2}}}$, and etc.

Remark 9．4．Occasionally，it is convenient to begin a sequence with the 0 －th term or even the k－th term．In such cases，we write $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{a_{n}\right\}_{n=k}^{\infty}$ to denote the sequences．

The primary goal of this chapter concerns the limit of a sequence；that is，we would like to know to which value the n－th term of a sequence approaches as n become larger and larger．

Definition 9.5

A sequence of real numbers $\left\{a_{n}\right\}_{n=1}^{\infty}$ is said to converge to L if for every $\varepsilon>0$ ，there exists $N>0$ such that

$$
\left|a_{n}-L\right|<\varepsilon \quad \text { whenever } \quad n \geqslant N
$$

Such an L（must be a real number and）is called a limit of the sequence．If $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to L ，we write $a_{n} \rightarrow x$ as $n \rightarrow \infty$ ．
A sequence of real number $\left\{a_{n}\right\}_{n=1}^{\infty}$ is said to be convergent if there exists $L \in \mathbb{R}$ such that $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to L ．If no such L exists we say that $\left\{a_{n}\right\}_{n=1}^{\infty}$ does not converge or simply diverges．

Motivation：Intuitively，we expect that a sequence of real numbers $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to a number L if＂outside any open interval containing L there are only finitely many $a_{n}{ }^{\prime} s$＂． The statement inside＂＂can be translated into the following mathematical statement：

$$
\begin{equation*}
\forall \varepsilon>0, \#\left\{n \in \mathbb{N} \mid a_{n} \notin(L-\varepsilon, L+\varepsilon)\right\}<\infty, \tag{9.1.1}
\end{equation*}
$$

where $\# A$ denotes the number of points in the set A ．One can easily show that the conver－ gence of a sequence defined by（9．1．1）is equivalent to Definition 9．5．

In the definition above，we do not exclude the possibility that there are two different limits of a convergent sequence．In fact，this is never the case because of the following

Proposition 9.6

If $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence of real numbers，and $a_{n} \rightarrow a$ and $a_{n} \rightarrow b$ as $n \rightarrow \infty$ ，then $a=b$ ．（若收敛則極限唯一）。

We will not prove this proposition and treat it as a fact．
－Notation：Since the limit of a convergent sequence is unique，we use $\lim _{n \rightarrow \infty} a_{n}$ to denote this unique limit of a convergent sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ ．

Theorem 9.7

Let L be a real number, and $f:[1, \infty) \rightarrow \mathbb{R}$ be a function of a real variable such that $\lim _{x \rightarrow \infty} f(x)=L$. If $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence such that $f(n)=a_{n}$ for every positive integer n, then

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

Example 9.8. The limit of the sequence $\left\{e_{n}\right\}_{n=1}^{\infty}$ defined by $e_{n}=\left(1+\frac{1}{n}\right)^{n}$ is e.
When a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is given by evaluating a differentiable function $f:[1, \infty) \rightarrow \mathbb{R}$ on \mathbb{N}, sometimes we can use L'Hôspital's rule to find the limit of the sequence.

Example 9.9. The limit of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ defined by $a_{n}=\frac{n^{2}}{2^{n}-1}$ is

$$
\lim _{x \rightarrow \infty} \frac{x^{2}}{2^{x}-1}=\lim _{x \rightarrow \infty} \frac{2 x}{2^{x} \ln 2}=\lim _{x \rightarrow \infty} \frac{2}{2^{x}(\ln 2)^{2}}=0
$$

There are cases that a sequence cannot be obtained by evaluating a function defined on $[1, \infty)$. In such cases, the limit of a sequence cannot be computed using L'Hôspital's rule and it requires more techniques to find the limit.
Example 9.10. The limit of the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ defined by $s_{n}=\frac{n!}{n^{n+\frac{1}{2}} e^{-n}}$ is $\sqrt{2 \pi}$; that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{n!}{\sqrt{2 \pi n} n^{n} e^{-n}}=1 \tag{9.1.2}
\end{equation*}
$$

This is the Stirling formula. See Extra Exercise Problem Sets 6 from the previous semester.
Similar to Theorem 1.13, we have the following

Theorem 9.11

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be sequences of real numbers such that $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=K$. Then

1. $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=L \pm K$.
2. $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=L K$. In particular, $\lim _{n \rightarrow \infty}\left(c a_{n}\right)=c L$ if c is a real number.
3. $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{L}{K}$ if $K \neq 0$.

Theorem 9．12：Squeeze Theorem

Let $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty}$ and $\left\{c_{n}\right\}_{n=1}^{\infty}$ be sequences of real numbers such that $a_{n} \leqslant c_{n} \leqslant b_{n}$ for all $n \geqslant N$ ．If $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=L$ ，then $\lim _{n \rightarrow \infty} c_{n}=L$ ．

Theorem 9．13：Absolute Value Theorem

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers．If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ ，then $\lim _{n \rightarrow \infty} a_{n}=0$ ．

Proof．Let $\left\{b_{n}\right\}_{n=1}^{\infty}$ and $\left\{c_{n}\right\}_{n=1}^{\infty}$ be sequence of real numbers defined by $b_{n}=-\left|a_{n}\right|$ and $c_{n}=\left|a_{n}\right|$ ．Then $b_{n} \leqslant a_{n} \leqslant c_{n}$ for all $n \in \mathbb{N}$ ．Since $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ ，Theorem 9.11 implies that $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n}=0$ and the Squeeze Theorem further implies that $\lim _{n \rightarrow \infty} a_{n}=0$ ．

Definition 9．14：Monotonicity of Sequences

A sequence $\left\{a_{n}\right\}_{n=1}^{\infty} \subseteq \mathbb{R}$ is said to be
1．（monotone）increasing if $a_{n+1} \geqslant a_{n}$ for all $n \in \mathbb{N}$ ；
2．（monotone）decreasing if $a_{n+1} \leqslant a_{n}$ for all $n \in \mathbb{N}$ ；
3．monotone if $\left\{a_{n}\right\}_{n=1}^{\infty}$ is an increasing sequence or a decreasing sequence．

Example 9．15．The sequence $\left\{s_{n}\right\}_{n=2}^{\infty}$ defined in Example 9.10 is a monotone decreasing sequence．

Definition 9．16：Boundedness of Sequences

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers．
1．$\left\{a_{n}\right\}_{n=1}^{\infty}$ is said to be bounded（有界的）if there exists $M \in \mathbb{R}$ such that $\left|a_{n}\right| \leqslant M$ for all $n \in \mathbb{N}$ ．

2．$\left\{a_{n}\right\}_{n=1}^{\infty}$ is said to be bounded from above（有上界）if there exists $B \in \mathbb{R}$ ， called an upper bound of the sequence，such that $a_{n} \leqslant B$ for all $n \in \mathbb{N}$ ．Such a number B is called an upper bound of the sequence．

3．$\left\{a_{n}\right\}_{n=1}^{\infty}$ is said to be bounded from below（有下界）if there exists $A \in \mathbb{R}$ ， called a lower bound of the sequence，such that $A \leqslant a_{n}$ for all $n \in \mathbb{N}$ ．Such a number A is called a lower bound of the sequence．

Example 9．17．The sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ defined by $a_{n}=n$ is bounded from below by 0 but not bounded from above．

Proposition 9.18

A convergent sequence of real numbers is bounded（數列收敛必有界）．
Proof．Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a convergent sequence with limit L ．Then by the definition of limits of sequences，there exists $N>0$ such that

$$
a_{n} \in(L-1, L+1) \quad \forall n \geqslant N .
$$

Let $M=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \cdots,\left|a_{N-1}\right|,|L|+1\right\}$ ．Then $\left|a_{n}\right| \leqslant M$ for all $n \in \mathbb{N}$ ．
Remark 9．19．A bounded sequence might not be convergent．For example，let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be defined by $a_{n}=3+(-1)^{n}$ ．Then

$$
a_{1}=a_{3}=a_{5}=\cdots=a_{2 k-1}=\cdots=2 \quad \text { and } \quad a_{2}=a_{4}=a_{6}=\cdots=a_{2 k}=\cdots=4
$$

Therefore，the only possible limits are $\{2,4\}$ ；however，by the fact that

$$
\#\left\{n \in \mathbb{N} \mid a_{n} \notin(1,3)\right\}=\#\left\{n \in \mathbb{N} \mid a_{n} \notin(3,5)\right\}=\infty
$$

we find that 2 and 4 are not the limit of $\left\{a_{n}\right\}_{n=1}^{\infty}$ ．Therefore，$\left\{a_{n}\right\}_{n=1}^{\infty}$ does not converge．

