Calculus MA1002－A Midterm 3

National Central University，May．28， 2019
Problem 1．（ 20% ）True or False（是非題）：每題兩分，答對得兩分，答錯倒扣兩分（倒扣至本大題零分為止）

In the following，R is always an open region in the plane，(a, b) is always a point in R ，and $f: R \rightarrow \mathbb{R}$ is a function of two variables．

F 1．If $\lim _{t \rightarrow 0} f(a+t \cos \theta, b+t \sin \theta)$ exists for all $\theta \in \mathbb{R}$ ，then $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists．
T 2．If f is differentiable at (a, b) ，then f is continuous at (a, b) ．
F 3．If f_{x} and f_{y} both exist on R ，then f is differentiable on R ．
T 4．If f_{x} and f_{y} are continuous on R ，then f is continuous on R ．
T 5．If f_{x} and f_{y} both exist and are bounded on R ，then f is continuous on R ．
F 6．If $f_{x}(a, b)$ and $f_{y}(a, b)$ both exist，and \boldsymbol{u} is a unit vector，then the directional derivative of f at (a, b) in the direction \boldsymbol{u} is $\left(f_{x}(a, b), f_{y}(a, b)\right) \cdot \boldsymbol{u}$ ．

F 7．If the directional derivative of f at (a, b) exists in all directions，then f is continuous at (a, b) ．
F 8．If $f_{x y}$ and $f_{y x}$ both exist on R ，then $f_{x y}=f_{y x}$ on R ．
F 9．If f_{x} and f_{y} are continuous on R ，then the level curve $f(x, y)=f(a, b)$ has a tangent line at (a, b) ．

T 10．If f_{x} and f_{y} are continuous on R and $(\nabla f)(a, b) \neq \mathbf{0}$ ，then the value of f at (a, b) increases most rapidly in the direction $\frac{(\nabla f)(a, b)}{\|(\nabla f)(a, b)\|}$ ．
Problem 2．Let R be an open region in the plane，$f: R \rightarrow \mathbb{R}$ be a function，and $(a, b) \in R$ ．
1．（5\％）Define the differentiability of f at (a, b) ．
2．（5\％）Define the directional derivative of f at (a, b) in direction \mathbf{u} ，where $\boldsymbol{u}=(\cos \theta, \sin \theta)$ is a unit vector．

Problem 3．Assume that f is a continuous function of two variable satisfying that

$$
\lim _{(x, y) \rightarrow(-1,1)} \frac{f(x, y)-3 x^{2}+2 y^{2}}{\sqrt{(x+1)^{2}+(y-1)^{2}}}=0 .
$$

1．(10%) Find $f_{x}(-1,1)$ and $f_{y}(-1,1)$ ．
2．(5%) Prove or disprove that f is differentiable at $(-1,1)$ ．

Solution. Note that since $\lim _{(x, y) \rightarrow(-1,1)} \frac{f(x, y)-3 x^{2}+2 y^{2}}{\sqrt{(x+1)^{2}+(y-1)^{2}}}=0$, we must have

$$
\lim _{(x, y) \rightarrow(-1,1)}\left[f(x, y)-3 x^{2}+2 y^{2}\right]=0
$$

thus $\lim _{(x, y) \rightarrow(-1,1)} f(x, y)=1$. Since f is continuous, $f(-1,1)=1$.
For $(x, y) \neq(-1,1)$,

$$
\begin{aligned}
\frac{f(x, y)-3 x^{2}+2 y^{2}}{\sqrt{(x+1)^{2}+(y-1)^{2}}} & =\frac{f(x, y)-3[(x+1)-1]^{2}+2[(y-1)+1]^{2}}{\sqrt{(x+1)^{2}+(y-1)^{2}}} \\
& =\frac{f(x, y)-3(x+1)^{2}+6(x+1)-3+2(y-1)^{2}+4(y-1)+2}{\sqrt{(x+1)^{2}+(y-1)^{2}}} \\
& =\frac{f(x, y)-f(-1,1)+6(x+1)+4(y-1)}{\sqrt{(x+1)^{2}+(y-1)^{2}}}+\frac{3(x+1)^{2}+2(y-1)^{2}}{\sqrt{(x+1)^{2}+(y-1)^{2}}}
\end{aligned}
$$

Since $\left|\frac{3(x+1)^{2}+2(y-1)^{2}}{\sqrt{(x+1)^{2}+(y-1)^{2}}}\right| \leqslant 3|x+1|+2|y-1|$, by Squeeze Theorem we find that

$$
\lim _{(x, y) \rightarrow(-1,1)} \frac{3(x+1)^{2}+2(y-1)^{2}}{\sqrt{(x+1)^{2}+(y-1)^{2}}}=0 .
$$

Therefore,

$$
\lim _{(x, y) \rightarrow(-1,1)} \frac{f(x, y)-f(-1,1)+6(x+1)+4(y-1)}{\sqrt{(x+1)^{2}+(y-1)^{2}}}=0
$$

which implies that

$$
\lim _{(x, y) \rightarrow(-1,1)} \frac{|f(x, y)-f(-1,1)+6(x+1)+4(y-1)|}{\sqrt{(x+1)^{2}+(y-1)^{2}}}=0 .
$$

1. Note that the identity above implies that

$$
\lim _{\substack{(x, y) \rightarrow(-1,1) \\ y=1}} \frac{|f(x, y)-f(-1,1)+6(x+1)+4(y-1)|}{\sqrt{(x+1)^{2}+(y-1)^{2}}}=0 .
$$

Therefore,

$$
\begin{aligned}
0 & \left.=\lim _{\substack{(x, y)(-1,1) \\
y=1}} \frac{|f(x, y)-f(-1,1)+6(x+1)+4(y-1)|}{\sqrt{(x+1)^{2}+(y-1)^{2}}} \right\rvert\, \\
& =\lim _{x \rightarrow-1}\left|\frac{f(x, 1)-f(-1,1)+6(x+1)}{x+1}\right|=\lim _{x \rightarrow-1}\left|\frac{f(x, 1)-f(-1,1)}{x-(-1)}+6\right| ;
\end{aligned}
$$

thus

$$
f_{x}(-1,1)=\lim _{x \rightarrow-1} \frac{f(x, 1)-f(-1,1)}{x-(-1)}=-6 .
$$

Similarly, $\underline{f_{y}(-1,1)=-4}$.
2. In the computations above, we conclude that

$$
\left.\lim _{(x, y) \rightarrow(-1,1)} \frac{\left|f(x, y)-f(-1,1)-f_{x}(-1,1)(x+1)-f_{y}(-1,1)(y-1)\right|}{\sqrt{(x+1)^{2}+(y-1)^{2}}} \right\rvert\,=0 .
$$

By definition, f is differentiable at $(-1,1)$.
Problem 4. (10%) Let $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x^{2}(x+y)}{x^{2}+y^{4}} & \text { if }(x, y) \neq(0,0), \\
0 & \text { if }(x, y)=(0,0) .
\end{array}\right.
$$

Find the directional derivative of f at $(0,0)$ in the direction along which the value of the function f at $(0,0)$ decreases most rapidly.

Solution. Let \boldsymbol{u} be the direction along which the value of the function f at $(0,0)$ decreases most rapidly. Then

$$
\left(D_{u} f\right)(0,0)=\min \left\{\left(D_{v} f\right)(0,0) \mid\|\boldsymbol{v}\|=1\right\} .
$$

Let $\boldsymbol{v}=(\cos \theta, \sin \theta)$. Then

$$
\begin{aligned}
\left(D_{v} f\right)(0,0) & =\lim _{t \rightarrow 0} \frac{f(t \cos \theta, t \sin \theta)-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{t^{3} \cos ^{2} \theta(\cos \theta+\sin \theta)}{t^{3}\left(\cos ^{2} \theta+t^{2} \sin ^{4} \theta\right)} \\
& =\lim _{t \rightarrow 0} \frac{\cos ^{2} \theta(\cos \theta+\sin \theta)}{\cos ^{2} \theta+t^{2} \sin ^{4} \theta} .
\end{aligned}
$$

If $\cos \theta=0$, then $\left(D_{v} f\right)(0,0)=0$. If $\cos \theta \neq 0$, then $\left(D_{v} f\right)(0,0)=\cos \theta+\sin \theta$. Therefore,

$$
\left(D_{v} f\right)(0,0)=\left\{\begin{array}{cl}
0 & \text { if } \cos \theta=0 \\
\cos \theta+\sin \theta & \text { if } \cos \theta \neq 0
\end{array}\right.
$$

Since $\min \{\cos \theta+\sin \theta \mid \theta \in[0,2 \pi)\}=-\sqrt{2}\left(\right.$ attained at $\left.\theta=\frac{3 \pi}{4}\right)$; thus $\underline{\left(D_{u} f\right)(0,0)=-\sqrt{2}}$.
Problem 5. (15\%) Find the second Taylor polynomial of the function $f(x, y)=\arctan \frac{y+1}{x+1}$ at $(0,0)$.
Solution. First, $f(0,0)=\arctan 1=\frac{\pi}{4}$. By the chain rule, for $x \neq-1$,

$$
\begin{aligned}
& f_{x}(x, y)=\frac{\frac{\partial}{\partial x} \frac{y+1}{x+1}}{1+\left(\frac{y+1}{x+1}\right)^{2}}=\frac{-\frac{y+1}{(x+1)^{2}}}{1+\left(\frac{y+1}{x+1}\right)^{2}}=-\frac{y+1}{(x+1)^{2}+(y+1)^{2}}, \\
& f_{y}(x, y)=\frac{\frac{\partial}{\partial y} \frac{y+1}{x+1}}{1+\left(\frac{y+1}{x+1}\right)^{2}}=\frac{\frac{1}{x+1}}{1+\left(\frac{y+1}{x+1}\right)^{2}}=\frac{x+1}{(x+1)^{2}+(y+1)^{2}},
\end{aligned}
$$

and

$$
\begin{aligned}
& f_{x x}(x, y)=\frac{2(x+1)(y+1)}{\left[(x+1)^{2}+(y+1)^{2}\right]^{2}}, \quad f_{y y}(x, y)=\frac{-2(x+1)(y+1)}{\left[(x+1)^{2}+(y+1)^{2}\right]^{2}} \\
& f_{x y}(x, y)=-\frac{(x+1)^{2}+(y+1)^{2}-2(y+1)^{2}}{\left[(x+1)^{2}+(y+1)^{2}\right]^{2}}=\frac{(y+1)^{2}-(x+1)^{2}}{\left[(x+1)^{2}+(y+1)^{2}\right]^{2}} .
\end{aligned}
$$

Therefore, the second Taylor's polynomial of f is

$$
\begin{gathered}
f(0,0)+f_{x}(0,0) x+f_{y}(0,0) y+\frac{1}{2}\left[f_{x x}(0,0) x^{2}+2 f_{x y}(0,0) x y+f_{y y}(0,0) y^{2}\right] \\
=\frac{\pi}{4}-\frac{1}{2} x+\frac{1}{2} y+\frac{1}{2}\left(\frac{1}{2} x^{2}-\frac{1}{2} y^{2}\right)=\frac{\pi}{4}-\frac{1}{2} x+\frac{1}{2} y+\frac{1}{4}\left(x^{2}-y^{2}\right) .
\end{gathered}
$$

Problem 6. (10\%) Find all relative extrema and saddle points of $f(x, y)=\left(x^{2}+y^{2}\right) e^{y^{2}-x^{2}}$ using the second derivative test. When a relative extremum is found, determine if it is a relative maximum or a relative minimum.

Solution. We first compute the first and second partial derivatives of f and find that

$$
\begin{aligned}
f_{x}(x, y) & =2 x e^{y^{2}-x^{2}}+\left(x^{2}+y^{2}\right)(-2 x) e^{y^{2}-x^{2}}=2 x\left(1-x^{2}-y^{2}\right) e^{y^{2}-x^{2}}, \\
f_{y}(x, y) & =2 y e^{y^{2}-x^{2}}+\left(x^{2}+y^{2}\right)(2 y) e^{y^{2}-x^{2}}=2 y\left(1+x^{2}+y^{2}\right) e^{y^{2}-x^{2}}, \\
f_{x x}(x, y) & =\left[2-6 x^{2}-2 y^{2}-4 x^{2}\left(1-x^{2}-y^{2}\right)\right] e^{y^{2}-x^{2}}, \\
f_{x y}(x, y) & =\left[2 x(-2 y)+4 x y\left(1-x^{2}-y^{2}\right)\right] e^{y^{2}-x^{2}}, \\
f_{y y}(x, y) & =\left[2+2 x^{2}+6 y^{2}+4 y^{2}\left(1+x^{2}+y^{2}\right)\right] e^{y^{2}-x^{2}} .
\end{aligned}
$$

Therefore, critical points of f are $(0,0),(1,0)$ and $(-1,0)$.

1. Since $f_{x x}(0,0)=f_{y y}(0,0)=2, f_{x y}(0,0)=0$, we find that $f_{x x}(0,0) f_{y y}(0,0)-f_{x y}(0,0)^{2}=4>0$; thus the fact that $f_{x x}(0,0)>0$ implies that $f(0,0)$ is a relative minimum of f.
2. Since $f_{x x}(1,0)=-4 e^{-1}, f_{y y}(1,0)=4 e^{-1}$ and $f_{x y}(1,0)=0$, we find that $f_{x x}(0,0) f_{y y}(0,0)-$ $f_{x y}(0,0)^{2}=-16 e^{-2}<0$; thus $(1,0)$ is a saddle point of f.
3. Since $f_{x x}(-1,0)=-4 e^{-1}, f_{y y}(-1,0)=4 e^{-1}$ and $f_{x y}(-1,0)=0$, we find that $f_{x x}(0,0) f_{y y}(0,0)-$ $f_{x y}(0,0)^{2}=-16 e^{-2}<0$; thus $(-1,0)$ is a saddle point of f.

Problem 7. (20\%) Let R be the solid in the space given by

$$
\left\{(x, y, z) \mid 1 \leqslant z \leqslant \sqrt{4-x^{2}-y^{2}}\right\} .
$$

Find the extreme value of function $w=f(x, y, z)=x y z$ on R.
Solution. Let $g(x, y, z)=x^{2}+y^{2}+z^{2}-4$, and $h(x, y, z)=z-1$. Then

$$
\begin{aligned}
& (\nabla f)(x, y, z)=(y z, x z, x y), \\
& (\nabla g)(x, y, z)=(2 x, 2 y, 2 z), \\
& (\nabla h)(x, y, z)=(0,0,1) .
\end{aligned}
$$

If $(\nabla f)(x, y, z)=0$, then $x y=y z=z x=0$ which implies that at least two of x, y, z are zero. In this case, $f(x, y, z)=0$.

Now we consider the extreme value of f on the boundary of R. Suppose that the extreme value of f occurs at $\left(x_{0}, y_{0}, z_{0}\right)$. Note that the boundary of R consists of three pieces: $g=0, h=0$ and $g=h=0$.

1. $g\left(x_{0}, y_{0}, z_{0}\right)=0$: Since $(\nabla g)\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$, Lagrange Multiplier Theorem implies that there exists $\lambda \in \mathbb{R}$ such that

$$
\left(y_{0} z_{0}, x_{0} z_{0}, x_{0} y_{0}\right)=\lambda\left(2 x_{0}, 2 y_{0}, 2 z_{0}\right) .
$$

Therefore, $\left(x_{0}, y_{0}, z_{0}, \lambda\right)$ satisfies

$$
\begin{align*}
y_{0} z_{0} & =2 \lambda x_{0} \tag{0.1a}\\
x_{0} z_{0} & =2 \lambda y_{0} \tag{0.1b}\\
x_{0} y_{0} & =2 \lambda z_{0} \tag{0.1c}\\
x_{0}^{2}+y_{0}^{2}+z_{0}^{2} & =4 \tag{0.1d}
\end{align*}
$$

If one of x_{0}, y_{0}, z_{0} is zero, then $f\left(x_{0}, y_{0}, z_{0}\right)=0$; thus we assume that $x_{0} y_{0} z_{0} \neq 0$. Then $\lambda \neq 0$ and the product of (0.1a,b,c) shows that $x_{0} y_{0} z_{0}=8 \lambda^{3}$. Therefore,

$$
x_{0}=\frac{4 \lambda^{2}}{x_{0}}, \quad y_{0}=\frac{4 \lambda^{2}}{y_{0}}, \quad z_{0}=\frac{4 \lambda^{2}}{z_{0}} .
$$

which implies that $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
\begin{array}{ll}
(\pm 2 \lambda, \pm 2 \lambda, 2 \lambda), & (\pm 2 \lambda, \mp 2 \lambda,-2 \lambda),
\end{array}(\pm 2 \lambda, 2 \lambda, \pm 2 \lambda), ~ 子, ~(2 \lambda, \pm 2 \lambda, \pm 2 \lambda), \quad(-2 \lambda, \pm 2 \lambda, \mp 2 \lambda) . ~ \$
$$

In either cases, (0.1d) implies that $12 \lambda^{2}=4$; thus $\lambda= \pm \frac{1}{\sqrt{3}}$. Since $z_{0} \geqslant 1$, we conclude that

$$
\left(x_{0}, y_{0}, z_{0}\right)=\left(\pm \frac{2}{\sqrt{3}}, \pm \frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right) \quad \text { or } \quad\left(\pm \frac{2}{\sqrt{3}}, \mp \frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right) .
$$

In this case, $f\left(x_{0}, y_{0}, z_{0}\right)= \pm \frac{8}{3 \sqrt{3}}$.
2. $h\left(x_{0}, y_{0}, z_{0}\right)=0$: Since $(\nabla h)\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$, Lagrange Multiplier Theorem implies that there exists $\lambda \in \mathbb{R}$ such that

$$
\left(y_{0} z_{0}, x_{0} z_{0}, x_{0} y_{0}\right)=\lambda(0,0,1) \quad \text { and } \quad z_{0}=1
$$

Therefore, $\left(x_{0}, y_{0}, z_{0}\right)=(0,0,1)$ which is impossible $f\left(x_{0}, y_{0}, z_{0}\right)=0$.
3. $g\left(x_{0}, y_{0}, z_{0}\right)=h\left(x_{0}, y_{0}, z_{0}\right)=0$: Since

$$
(\nabla g)\left(x_{0}, y_{0}, z_{0}\right) \times(\nabla h)\left(x_{0}, y_{0}, z_{0}\right)=\left(2 x_{0}, 2 y_{0}, 2 z_{0}\right) \times(1,1,1)=2\left(y_{0}-z_{0}, z_{0}-x_{0}, x_{0}-y_{0}\right)
$$

$(\nabla g)\left(x_{0}, y_{0}, z_{0}\right) \times(\nabla h)\left(x_{0}, y_{0}, z_{0}\right)=\mathbf{0}$ if and only if $x_{0}=y_{0}=z_{0}$. Since $h\left(x_{0}, y_{0}, z_{0}\right)=0$ implies that $z_{0}=1$, and $g(1,1,1) \neq 0$, we find that $(\nabla g)\left(x_{0}, y_{0}, z_{0}\right) \times(\nabla h)\left(x_{0}, y_{0}, z_{0}\right)=\mathbf{0}$. Therefore, Lagrange Multiplier Theorem implies that there exist $\lambda \mu \in \mathbb{R}$ such that

$$
\left(y_{0} z_{0}, x_{0} z_{0}, x_{0} y_{0}\right)=\lambda\left(2 x_{0}, 2 y_{0}, 2 z_{0}\right)+\mu(0,0,1) .
$$

Therefore, $\left(x_{0}, y_{0}, z_{0}, \lambda, \mu\right)$ satisfies

$$
\begin{align*}
y_{0} z_{0} & =2 \lambda x_{0}, \tag{0.2a}\\
x_{0} z_{0} & =2 \lambda y_{0}, \tag{0.2b}\\
x_{0} y_{0} & =2 \lambda z_{0}+\mu, \tag{0.2c}\\
x_{0}^{2}+y_{0}^{2}+z_{0}^{2} & =4, \tag{0.2d}\\
z_{0} & =1 . \tag{0.2e}
\end{align*}
$$

By ($0.2 \mathrm{a}, \mathrm{b}, \mathrm{e}$), we find that $x_{0}=2 \lambda y_{0}=4 \lambda^{2} x_{0}$; thus $x_{0}=0$ or $4 \lambda^{2}=1$.
(a) If $x_{0}=0$, then $f\left(x_{0}, y_{0}, z_{0}\right)=0$.
(b) If $x_{0} \neq 0$, then $\lambda= \pm \frac{1}{2}$.
(i) $\lambda=\frac{1}{2}:(\sqrt{0.2} a, e)$ implies that $y_{0}=x_{0}$; thus (0.2) implies that $\left(x_{0}, y_{0}, z_{0}\right)=\left(\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}}, 1\right)$. In this case, $f\left(x_{0}, y_{0}, z_{0}\right)=\frac{3}{2}$.
(ii) $\lambda=-\frac{1}{2}:(0.2 \mathrm{a}, \mathrm{e})$ implies that $y_{0}=-x_{0}$; thus (0.2) implies that $\left(x_{0}, y_{0}, z_{0}\right)=(\pm$ $\left.\sqrt{\frac{3}{2}}, \mp \sqrt{\frac{3}{2}}, 1\right)$. In this case, $f\left(x_{0}, y_{0}, z_{0}\right)=-\frac{3}{2}$.
Comparing the values of all possible extreme points $\left(x_{0}, y_{0}, z_{0}\right)$, we find that the maximum of f on R is $\frac{8}{3 \sqrt{3}}$, and the minimum of f on R is $-\frac{8}{3 \sqrt{3}}$.

