
Calculus MA1002-A Midterm 3
National Central University, May. 28, 2019

Problem 1. (20%) True or False（是非題）：每題兩分，答對得兩分，答錯倒扣兩分（倒扣至本
大題零分為止）

In the following, R is always an open region in the plane, (a, b) is always a point in R, and
f : R Ñ R is a function of two variables.

F 1. If lim
tÑ0

f(a+ t cos θ, b+ t sin θ) exists for all θ P R, then lim
(x,y)Ñ(a,b)

f(x, y) exists.

T 2. If f is differentiable at (a, b), then f is continuous at (a, b).

F 3. If fx and fy both exist on R, then f is differentiable on R.

T 4. If fx and fy are continuous on R, then f is continuous on R.

T 5. If fx and fy both exist and are bounded on R, then f is continuous on R.

F 6. If fx(a, b) and fy(a, b) both exist, and u is a unit vector, then the directional derivative of f at
(a, b) in the direction u is

(
fx(a, b), fy(a, b)

)
¨ u.

F 7. If the directional derivative of f at (a, b) exists in all directions, then f is continuous at (a, b).

F 8. If fxy and fyx both exist on R, then fxy = fyx on R.

F 9. If fx and fy are continuous on R, then the level curve f(x, y) = f(a, b) has a tangent line at
(a, b).

T 10. If fx and fy are continuous on R and (∇f)(a, b) ‰ 0, then the value of f at (a, b) increases

most rapidly in the direction (∇f)(a, b)

}(∇f)(a, b)}
.

Problem 2. Let R be an open region in the plane, f : R Ñ R be a function, and (a, b) P R.

1. (5%) Define the differentiability of f at (a, b).

2. (5%) Define the directional derivative of f at (a, b) in direction u, where u = (cos θ, sin θ) is a
unit vector.

Problem 3. Assume that f is a continuous function of two variable satisfying that

lim
(x,y)Ñ(´1,1)

f(x, y) ´ 3x2 + 2y2
a

(x+ 1)2 + (y ´ 1)2
= 0 .

1. (10%) Find fx(´1, 1) and fy(´1, 1).

2. (5%) Prove or disprove that f is differentiable at (´1, 1).



Solution. Note that since lim
(x,y)Ñ(´1,1)

f(x, y) ´ 3x2 + 2y2
a

(x+ 1)2 + (y ´ 1)2
= 0, we must have

lim
(x,y)Ñ(´1,1)

[
f(x, y) ´ 3x2 + 2y2

]
= 0 ;

thus lim
(x,y)Ñ(´1,1)

f(x, y) = 1. Since f is continuous, f(´1, 1) = 1.

For (x, y) ‰ (´1, 1),

f(x, y) ´ 3x2 + 2y2
a

(x+ 1)2 + (y ´ 1)2
=

f(x, y) ´ 3
[
(x+ 1) ´ 1

]2
+ 2

[
(y ´ 1) + 1

]2
a

(x+ 1)2 + (y ´ 1)2

=
f(x, y) ´ 3(x+ 1)2 + 6(x+ 1) ´ 3 + 2(y ´ 1)2 + 4(y ´ 1) + 2

a

(x+ 1)2 + (y ´ 1)2

=
f(x, y) ´ f(´1, 1) + 6(x+ 1) + 4(y ´ 1)

a

(x+ 1)2 + (y ´ 1)2
+

3(x+ 1)2 + 2(y ´ 1)2
a

(x+ 1)2 + (y ´ 1)2
.

Since
ˇ

ˇ

ˇ

3(x+ 1)2 + 2(y ´ 1)2
a

(x+ 1)2 + (y ´ 1)2

ˇ

ˇ

ˇ
ď 3|x+ 1| + 2|y ´ 1|, by Squeeze Theorem we find that

lim
(x,y)Ñ(´1,1)

3(x+ 1)2 + 2(y ´ 1)2
a

(x+ 1)2 + (y ´ 1)2
= 0 .

Therefore,
lim

(x,y)Ñ(´1,1)

f(x, y) ´ f(´1, 1) + 6(x+ 1) + 4(y ´ 1)
a

(x+ 1)2 + (y ´ 1)2
= 0

which implies that

lim
(x,y)Ñ(´1,1)

ˇ

ˇf(x, y) ´ f(´1, 1) + 6(x+ 1) + 4(y ´ 1)
ˇ

ˇ

a

(x+ 1)2 + (y ´ 1)2
= 0 .

1. Note that the identity above implies that

lim
(x,y)Ñ(´1,1)

y=1

ˇ

ˇf(x, y) ´ f(´1, 1) + 6(x+ 1) + 4(y ´ 1)
ˇ

ˇ

a

(x+ 1)2 + (y ´ 1)2
= 0 .

Therefore,

0 = lim
(x,y)Ñ(´1,1)

y=1

ˇ

ˇf(x, y) ´ f(´1, 1) + 6(x+ 1) + 4(y ´ 1)
ˇ

ˇ

a

(x+ 1)2 + (y ´ 1)2

ˇ

ˇ

ˇ

= lim
xÑ´1

ˇ

ˇ

ˇ

f(x, 1) ´ f(´1, 1) + 6(x+ 1)

x+ 1

ˇ

ˇ

ˇ
= lim

xÑ´1

ˇ

ˇ

ˇ

f(x, 1) ´ f(´1, 1)

x ´ (´1)
+ 6

ˇ

ˇ

ˇ
;

thus
fx(´1, 1) = lim

xÑ´1

f(x, 1) ´ f(´1, 1)

x ´ (´1)
= ´6 .

Similarly, fy(´1, 1) = ´4.

2. In the computations above, we conclude that

lim
(x,y)Ñ(´1,1)

ˇ

ˇf(x, y) ´ f(´1, 1) ´ fx(´1, 1)(x+ 1) ´ fy(´1, 1)(y ´ 1)
ˇ

ˇ

a

(x+ 1)2 + (y ´ 1)2

ˇ

ˇ

ˇ
= 0 .



By definition, f is differentiable at (´1, 1). ˝

Problem 4. (10%) Let f, g : R2 Ñ R be defined by

f(x, y) =

$

&

%

x2(x+ y)

x2 + y4
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Find the directional derivative of f at (0, 0) in the direction along which the value of the function f

at (0, 0) decreases most rapidly.

Solution. Let u be the direction along which the value of the function f at (0, 0) decreases most
rapidly. Then

(Duf)(0, 0) = min
␣

(Dvf)(0, 0)
ˇ

ˇ }v} = 1
(

.

Let v = (cos θ, sin θ). Then

(Dvf)(0, 0) = lim
tÑ0

f(t cos θ, t sin θ) ´ f(0, 0)

t
= lim

tÑ0

t3 cos2 θ(cos θ + sin θ)

t3(cos2 θ + t2 sin4 θ)

= lim
tÑ0

cos2 θ(cos θ + sin θ)

cos2 θ + t2 sin4 θ
.

If cos θ = 0, then (Dvf)(0, 0) = 0. If cos θ ‰ 0, then (Dvf)(0, 0) = cos θ + sin θ. Therefore,

(Dvf)(0, 0) =

"

0 if cos θ = 0 ,

cos θ + sin θ if cos θ ‰ 0 .

Since min
␣

cos θ + sin θ
ˇ

ˇ θ P [0, 2π)
(

= ´
?
2
(
attained at θ =

3π

4

)
; thus (Duf)(0, 0) = ´

?
2. ˝

Problem 5. (15%) Find the second Taylor polynomial of the function f(x, y) = arctan y + 1

x+ 1
at

(0, 0).

Solution. First, f(0, 0) = arctan 1 =
π

4
. By the chain rule, for x ‰ ´1,

fx(x, y) =
B

Bx
y+1
x+1

1 + ( y+1
x+1

)2
=

´
y+1

(x+1)2

1 + ( y+1
x+1

)2
= ´

y + 1

(x+ 1)2 + (y + 1)2
,

fy(x, y) =

B
By

y+1
x+1

1 + ( y+1
x+1

)2
=

1
x+1

1 + ( y+1
x+1

)2
=

x+ 1

(x+ 1)2 + (y + 1)2
,

and

fxx(x, y) =
2(x+ 1)(y + 1)[

(x+ 1)2 + (y + 1)2
]2 , fyy(x, y) =

´2(x+ 1)(y + 1)[
(x+ 1)2 + (y + 1)2

]2
fxy(x, y) = ´

(x+ 1)2 + (y + 1)2 ´ 2(y + 1)2[
(x+ 1)2 + (y + 1)2

]2 =
(y + 1)2 ´ (x+ 1)2[
(x+ 1)2 + (y + 1)2

]2 .
Therefore, the second Taylor’s polynomial of f is

f(0, 0) + fx(0, 0)x+ fy(0, 0)y +
1

2

[
fxx(0, 0)x

2 + 2fxy(0, 0)xy + fyy(0, 0)y
2
]

=
π

4
´

1

2
x+

1

2
y +

1

2

(1
2
x2 ´

1

2
y2
)
=

π

4
´

1

2
x+

1

2
y +

1

4

(
x2 ´ y2

)
. ˝



Problem 6. (10%) Find all relative extrema and saddle points of f(x, y) = (x2+y2)ey
2´x2 using the

second derivative test. When a relative extremum is found, determine if it is a relative maximum or
a relative minimum.

Solution. We first compute the first and second partial derivatives of f and find that

fx(x, y) = 2xey
2´x2

+ (x2 + y2)(´2x)ey
2´x2

= 2x(1 ´ x2 ´ y2)ey
2´x2

,

fy(x, y) = 2yey
2´x2

+ (x2 + y2)(2y)ey
2´x2

= 2y(1 + x2 + y2)ey
2´x2

,

fxx(x, y) =
[
2 ´ 6x2 ´ 2y2 ´ 4x2(1 ´ x2 ´ y2)

]
ey

2´x2

,

fxy(x, y) =
[
2x(´2y) + 4xy(1 ´ x2 ´ y2)

]
ey

2´x2

,

fyy(x, y) =
[
2 + 2x2 + 6y2 + 4y2(1 + x2 + y2)

]
ey

2´x2

.

Therefore, critical points of f are (0, 0), (1, 0) and (´1, 0).

1. Since fxx(0, 0) = fyy(0, 0) = 2, fxy(0, 0) = 0, we find that fxx(0, 0)fyy(0, 0)´fxy(0, 0)
2 = 4 ą 0;

thus the fact that fxx(0, 0) ą 0 implies that f(0, 0) is a relative minimum of f .

2. Since fxx(1, 0) = ´4e´1, fyy(1, 0) = 4e´1 and fxy(1, 0) = 0, we find that fxx(0, 0)fyy(0, 0) ´

fxy(0, 0)
2 = ´16e´2 ă 0; thus (1, 0) is a saddle point of f .

3. Since fxx(´1, 0) = ´4e´1, fyy(´1, 0) = 4e´1 and fxy(´1, 0) = 0, we find that fxx(0, 0)fyy(0, 0)´
fxy(0, 0)

2 = ´16e´2 ă 0; thus (´1, 0) is a saddle point of f . ˝

Problem 7. (20%) Let R be the solid in the space given by
␣

(x, y, z)
ˇ

ˇ 1 ď z ď
a

4 ´ x2 ´ y2
(

.

Find the extreme value of function w = f(x, y, z) = xyz on R.

Solution. Let g(x, y, z) = x2 + y2 + z2 ´ 4, and h(x, y, z) = z ´ 1. Then

(∇f)(x, y, z) = (yz, xz, xy) ,

(∇g)(x, y, z) = (2x, 2y, 2z) ,

(∇h)(x, y, z) = (0, 0, 1) .

If (∇f)(x, y, z) = 0, then xy = yz = zx = 0 which implies that at least two of x, y, z are zero. In
this case, f(x, y, z) = 0.

Now we consider the extreme value of f on the boundary of R. Suppose that the extreme value
of f occurs at (x0, y0, z0). Note that the boundary of R consists of three pieces: g = 0, h = 0 and
g = h = 0.

1. g(x0, y0, z0) = 0: Since (∇g)(x0, y0, z0) ‰ 0, Lagrange Multiplier Theorem implies that there
exists λ P R such that

(y0z0, x0z0, x0y0) = λ(2x0, 2y0, 2z0) .



Therefore, (x0, y0, z0, λ) satisfies

y0z0 = 2λx0 , (0.1a)
x0z0 = 2λy0 , (0.1b)
x0y0 = 2λz0 , (0.1c)

x2
0 + y20 + z20 = 4 . (0.1d)

If one of x0, y0, z0 is zero, then f(x0, y0, z0) = 0; thus we assume that x0y0z0 ‰ 0. Then λ ‰ 0

and the product of (0.1a,b,c) shows that x0y0z0 = 8λ3. Therefore,

x0 =
4λ2

x0
, y0 =

4λ2

y0
, z0 =

4λ2

z0
.

which implies that (x0, y0, z0) is

(˘2λ,˘2λ, 2λ) , (˘2λ,¯2λ,´2λ) , (˘2λ, 2λ,˘2λ) ,

(˘2λ,´2λ,¯2λ) , (2λ,˘2λ,˘2λ) , (´2λ,˘2λ,¯2λ) .

In either cases, (0.1d) implies that 12λ2 = 4; thus λ = ˘
1

?
3
. Since z0 ě 1, we conclude that

(x0, y0, z0) =
(

˘
2

?
3
,˘

2
?
3
,

2
?
3

)
or

(
˘

2
?
3
,¯

2
?
3
,

2
?
3

)
.

In this case, f(x0, y0, z0) = ˘
8

3
?
3
.

2. h(x0, y0, z0) = 0: Since (∇h)(x0, y0, z0) ‰ 0, Lagrange Multiplier Theorem implies that there
exists λ P R such that

(y0z0, x0z0, x0y0) = λ(0, 0, 1) and z0 = 1 .

Therefore, (x0, y0, z0) = (0, 0, 1) which is impossible f(x0, y0, z0) = 0.

3. g(x0, y0, z0) = h(x0, y0, z0) = 0: Since

(∇g)(x0, y0, z0) ˆ (∇h)(x0, y0, z0) = (2x0, 2y0, 2z0) ˆ (1, 1, 1) = 2(y0 ´ z0, z0 ´ x0, x0 ´ y0) ,

(∇g)(x0, y0, z0)ˆ (∇h)(x0, y0, z0) = 0 if and only if x0 = y0 = z0. Since h(x0, y0, z0) = 0 implies
that z0 = 1, and g(1, 1, 1) ‰ 0, we find that (∇g)(x0, y0, z0) ˆ (∇h)(x0, y0, z0) = 0. Therefore,
Lagrange Multiplier Theorem implies that there exist λµ P R such that

(y0z0, x0z0, x0y0) = λ(2x0, 2y0, 2z0) + µ(0, 0, 1) .

Therefore, (x0, y0, z0, λ, µ) satisfies

y0z0 = 2λx0 , (0.2a)
x0z0 = 2λy0 , (0.2b)
x0y0 = 2λz0 + µ , (0.2c)

x2
0 + y20 + z20 = 4 , (0.2d)

z0 = 1 . (0.2e)

By (0.2a,b,e), we find that x0 = 2λy0 = 4λ2x0; thus x0 = 0 or 4λ2 = 1.



(a) If x0 = 0, then f(x0, y0, z0) = 0.

(b) If x0 ‰ 0, then λ = ˘
1

2
.

(i) λ =
1

2
: (0.2a,e) implies that y0 = x0; thus (0.2) implies that (x0, y0, z0) =

(c3

2
,

c

3

2
, 1
)
.

In this case, f(x0, y0, z0) =
3

2
.

(ii) λ = ´
1

2
: (0.2a,e) implies that y0 = ´x0; thus (0.2) implies that (x0, y0, z0) =

(
˘

c

3

2
,¯

c

3

2
, 1
)
. In this case, f(x0, y0, z0) = ´

3

2
.

Comparing the values of all possible extreme points (x0, y0, z0), we find that the maximum of f on

R is 8

3
?
3
, and the minimum of f on R is ´

8

3
?
3
. ˝


