Calculus MA1002－A Quiz 08

National Central University，May 232019

學號：

\qquad姓名： \qquad
Problem 1．Let $P_{1}=(1,0), P_{2}=(1,1), P_{3}=(0,-1)$ and $P_{4}=(1,-1)$ be four points on the plane． Find a straight line L so that the sum of the squared distance $S=\sum_{i=1}^{4} \operatorname{dist}\left(P_{i}, L\right)^{2}$ is smallest，where $\operatorname{dist}(P, L)$ denotes the distance from a point P to line L ．

Solution．Assume that the line L is $\cos \theta x+\sin \theta y+k=0$ for some θ and k ．Then

$$
S(\theta, k)=\sum_{i=1}^{4}\left(x_{i} \cos \theta+y_{i} \sin \theta+k\right)^{2}
$$

where $P_{i}=\left(x_{i}, y_{i}\right)$ ．We then have $\sum_{i=1}^{4} x_{i}^{2}=3, \sum_{i=1}^{4} y_{i}^{2}=3, \sum_{i=1}^{4} x_{i} y_{i}=0, \sum_{i=1}^{4} x_{i}=3, \sum_{i=1}^{4} y_{i}=-1$ ；thus

$$
S(\theta, k)=3 \cos ^{2} \theta+3 \sin ^{2} \theta+4 k^{2}+6 k \cos \theta-2 k \sin \theta=4 k^{2}+6 k \cos \theta-2 k \sin \theta+3 .
$$

This implies that $S_{\theta}(\theta, k)=-2 k \cos \theta-6 k \sin \theta$ and $S_{k}(\theta, k)=6 \cos \theta-2 \sin \theta+8 k$ ；thus the critical point of S satisfies

$$
S_{\theta}(\theta, k)=0 \quad \Rightarrow \quad k \cos \theta+3 k \sin \theta=0 \quad \Rightarrow \quad k=0 \text { or } \cos \theta=-3 \sin \theta
$$

1．If $k=0$ ，then $3 \cos \theta=\sin \theta$ which implies that $10 \cos ^{2} \theta=1$ ．Therefore， $\cos \theta=\frac{ \pm 1}{\sqrt{10}}$ and $\sin \theta=\frac{ \pm 3}{\sqrt{10}}$ ．This gives a candidate line $x+3 y=0$ ．In this case，$S(\theta, k)=3$ ．
2．If $\cos \theta=-3 \sin \theta$ ，then $\sin \theta=\frac{ \pm 1}{\sqrt{10}}$ and $\cos \theta=\frac{\mp 3}{\sqrt{10}}$ which，using $S_{k}(\theta, k)=0$ ，implies that $k=\frac{ \pm 20}{8 \sqrt{10}}=\frac{ \pm 5}{2 \sqrt{10}}$ ．This gives a candidate line $3 x-y=\frac{5}{2}$ ．In this case，

$$
S(\theta, k)=4 \cdot \frac{25}{40}+6 \cdot \frac{-15}{20}-2 \cdot \frac{5}{20}+3=0.5 .
$$

Therefore，the line of interests is $3 x-y=\frac{5}{2}$ ．
Problem 2．（5\％）Find the extreme value of $f(x, y)=x y$ subject to the constraint $x^{3}-3 x y+y^{3}=1$ ． Solution．Let $g(x, y)=x^{3}-3 x y+y^{3}$ ．Then $(\nabla g)(x, y)=\left(3 x^{2}-3 y,-3 x+3 y^{2}\right)$ ；thus if $(\nabla g)(x, y)=0$ ， we must have

$$
x^{2}=y, y^{2}=x \Rightarrow x^{4}=x \Rightarrow x=0 \text { or } x=1 \Rightarrow(x, y)=(0,0) \text { or }(x, y)=(1,1) .
$$

Suppose that f ，subject to the constraint $g=1$ ，attains its extrema at $\left(x_{0}, y_{0}\right)$ ．Then by the fact that $(\nabla g)\left(x_{0}, y_{0}\right) \neq \mathbf{0}$ ，the Lagrange Multiplier Theorem implies that there exists $\lambda \in \mathbb{R}$ such that

$$
\left(y_{0}, x_{0}\right)=(\nabla f)\left(x_{0}, y_{0}\right)=\lambda(\nabla g)\left(x_{0}, y_{0}\right)=3 \lambda\left(x_{0}^{2}-y_{0},-x_{0}+y_{0}^{2}\right)
$$

Therefore, $y_{0}=3 \lambda\left(x_{0}^{2}-y_{0}\right)$ and $x_{0}=3 \lambda\left(-x_{0}+y_{0}^{2}\right)$.
If $x_{0}=0$, then $(3 \lambda+1) y_{0}=0$ and $\lambda y_{0}^{2}=0$. Then $y_{0}=0$ which is impossible since $g\left(x_{0}, y_{0}\right)=1$. Similarly, $\lambda \neq 0$, so $x_{0}, \lambda \neq 0$. Therefore,

$$
y_{0} \cdot 3 \lambda\left(-x_{0}+y_{0}^{2}\right)=3 \lambda\left(x_{0}^{2}-y_{0}\right) \cdot x_{0} \quad \Rightarrow \quad y_{0}^{3}=x_{0}^{3} \quad \Rightarrow \quad x_{0}=y_{0} .
$$

Therefore, $g\left(x_{0}, x_{0}\right)=2 x_{0}^{3}-x_{0}^{2}=1$. It is obvious that $x_{0}=1$ is a zero, and factoring shows that

$$
2 x_{0}^{3}-x_{0}^{2}-1=\left(x_{0}-1\right)\left(2 x_{0}^{2}+x_{0}+1\right) ;
$$

hence there is no other zero. Therefore, $f(1,1)=1$ is an extreme value of f subject to $g=1$.

