## Calculus MA1002－A Quiz 05

National Central University，May 022019

學號： $\qquad$姓名： $\qquad$
Problem 1．（4\％）Let $f$ be defined on an open region $R$ of the plane，and $\left(x_{0}, y_{0}\right)$ in $R$ ．State the definition of that＂$f$ is differentiable at $\left(x_{0}, y_{0}\right)$＂．

Solution：$f$ is differentiable at $\left(x_{0}, y_{0}\right)$ if

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{\left|f(x, y)-f\left(x_{0}, y_{0}\right)-f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)-f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)\right|}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}}=0 .
$$

Problem 2．（6\％）Let $R=\mathbb{R}^{2} \backslash\left\{(x, 0) \in \mathbb{R}^{2} \mid x \geqslant 0\right\}$ ，and $f: R \rightarrow \mathbb{R}$ be given by

$$
f(x, y)=\left\{\begin{array}{cl}
\arccos \frac{x}{\sqrt{x^{2}+y^{2}}} & \text { if } y>0 \\
\pi & \text { if } y=0 \\
2 \pi-\arccos \frac{x}{\sqrt{x^{2}+y^{2}}} & \text { if } y<0
\end{array}\right.
$$

Show that $f$ is differentiable at $(a, 0)$ for all $a<0$ ．
Solution：By the computation from the last quiz，we have

$$
f_{x}(x, y)=\left\{\begin{array}{cc}
-\frac{y}{x^{2}+y^{2}} & \text { if } y \neq 0, \\
0 & \text { if } y=0,
\end{array} \quad \text { and } \quad f_{y}(x, y)=\left\{\begin{array}{cl}
\frac{x}{x^{2}+y^{2}} & \text { if } y \neq 0 \\
\frac{1}{x} & \text { if } y=0
\end{array}\right.\right.
$$

Then $f_{x}(a, 0)=0$ and $f_{y}(a, 0)=\frac{1}{a}$ ．Since $\left|f_{x}(x, y)\right| \leqslant \frac{|y|}{x^{2}+y^{2}}$ ，by the fact that $\lim _{(x, y) \rightarrow(a, 0)} \frac{|y|}{x^{2}+y^{2}}=0$ ， the Squeeze Theorem implies that

$$
\lim _{(x, y) \rightarrow(a, 0)}\left|f_{x}(x, y)-f_{x}(a, 0)\right|=\lim _{(x, y) \rightarrow(a, 0)}\left|f_{x}(x, y)\right|=0
$$

Therefore，$f_{x}$ is continuous at $(a, 0)$ for all $a<0$ ．On the other hand，it is clear that $f_{x}$ is continuous on the upper and lower half planes；thus $f_{x}$ is continuous on $R$ ．

Next，we claim that $f_{y}$ is continuous on $R$ ．As the previous case，$f_{y}$ is continuous on the upper and lower half planes，so we only have to focus on the continuity of $f_{y}$ at $(a, 0)$ for all $a<0$ ．Let $a<0$ be given．Then

$$
\begin{aligned}
\left|f_{y}(x, y)-f_{y}(a, 0)\right| & \leqslant\left|\frac{x}{x^{2}+y^{2}}-\frac{1}{a}\right|+\left|\frac{1}{x}-\frac{1}{a}\right|=\left|\frac{x^{2}+y^{2}-a x}{a\left(x^{2}+y^{2}\right)}\right|+\frac{|x-a|}{|a x|} \\
& \leqslant \frac{|x-a||x|+|y|^{2}}{|a|\left(x^{2}+y^{2}\right)}+\frac{|x-a|}{|a x|}
\end{aligned}
$$

Since the right－hand side function approaches 0 as $(x, y)$ approaches $(a, 0)$ ，the Squeeze Theorem shows that

$$
\lim _{(x, y) \rightarrow(a, 0)}\left|f_{y}(x, y)-f_{y}(a, 0)\right|=0
$$

Therefore, $f_{y}$ is continuous at $(a, 0)$ for all $a<0$; thus $f_{y}$ is continuous on $R$.
Finally, by the continuity of $f_{x}$ and $f_{y}$ on $R$, we conclude that $f$ is differentiable on $R$ (so in particular, $f$ is differentiable at $(a, 0)$ for all $a<0)$.

