Calculus MA1002－A Quiz 03

National Central University，Apr． 112019

學號：

\qquad姓名： \qquad

Problem 1．Let f be a function defined by

$$
f(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+1.5)}\left(\frac{x}{2}\right)^{2 k+\frac{1}{2}}
$$

where the domain of f is the collection of x such that the infinite series converges，and Γ is the Gamma function．Complete the following．

1．(2%) Is f a power series？Explain your answer．
2．（4\％）Find $R>0$ such that f is defined on $(-R, R)$ but un－defined outside $[-R, R]$ ．You may need the formula $\Gamma(x+1)=x \Gamma(x)$ for all $x>0$ ．

3．(4%) Find the derivative of f on $(-R, R)$ ．

Solution：

1．No，it is not a power series since it is not an infinite sum of monomials．
2．Since

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & \frac{\left|\frac{(-1)^{n+1}}{(n+1)!\Gamma(n+2.5)}\right|\left|\frac{x}{2}\right|^{2(n+1)+\frac{1}{2}}}{\left|\frac{(-1)^{n}}{n!\Gamma(n+1.5)}\right|\left|\frac{x}{2}\right|^{2 n+\frac{1}{2}}} \\
& =\lim _{n \rightarrow \infty} \frac{\Gamma(n+1.5)}{(n+1) \Gamma(n+2.5)} \frac{x^{2}}{4}=\lim _{n \rightarrow \infty} \frac{\Gamma(n+1.5)}{(n+1)(n+1.5) \Gamma(n+1.5)} \frac{x^{2}}{4}=0
\end{aligned}
$$

the ratio test implies that the $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+1.5)}\left(\frac{x}{2}\right)^{2 k+\frac{1}{2}}$ converges for all $x \in \mathbb{R}$ ．
3．Rewrite f as the product of \sqrt{x} and a power series as follows：

$$
f(x)=x^{\frac{1}{2}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k+\frac{1}{2}} k!\Gamma(k+1.5)} x^{2 k} \quad \forall x \in \mathbb{R}
$$

By the product rule and the fact that the derivative of a power series is obtained by term－by－ term differentiation，for $x \in \mathbb{R}$ we conclude that

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2} x^{-\frac{1}{2}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k+\frac{1}{2}} k!\Gamma(k+1.5)} x^{2 k}+x^{\frac{1}{2}} \sum_{k=1}^{\infty} \frac{(-1)^{k} \cdot(2 k)}{2^{2 k+\frac{1}{2}} k!\Gamma(k+1.5)} x^{2 k-1} \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k+\frac{3}{2}} k!\Gamma(k+1.5)} x^{2 k-\frac{1}{2}}+\sum_{k=1}^{\infty} \frac{(-1)^{k}}{2^{2 k-\frac{1}{2}}(k-1)!\Gamma(k+1.5)} x^{2 k-\frac{1}{2}} .
\end{aligned}
$$

