Extra Exercise Problem Set 9

Mar. 22 2019

Problem 1. Let $\sum_{k=1}^{\infty} a_k$ be a conditionally convergent series. Show that $\sum_{k=1}^{\infty} [1 + \operatorname{sgn}(a_k)]a_k$ and $\sum_{k=1}^{\infty} [1 - \operatorname{sgn}(a_k)]a_k$ both diverge. Here the sign function sgn is defined by

$$\operatorname{sgn}(a) = \begin{cases} 1 & \text{if } a > 0, \\ 0 & \text{if } a = 0, \\ -1 & \text{if } a < 0. \end{cases}$$

Problem 2. A permutation of a non-empty set A is a one-to-one function from A onto A. Let $\pi : \mathbb{N} \to \mathbb{N}$ be a permutation of \mathbb{N} .

- 1. Suppose that $\{a_n\}_{n=1}^{\infty}$ be a convergent sequence of real numbers. Show that $\{a_{\pi(n)}\}_{n=1}^{\infty}$ is also convergent; that is, show that if $\{b_n\}_{n=1}^{\infty}$ is a sequence defined by $b_n = a_{\pi(n)}$, then $\{b_n\}_{n=1}^{\infty}$ also converges.
- 2. Suppose that $\sum_{k=1}^{\infty} a_k$ is absolutely convergent. Show that $\sum_{k=1}^{\infty} a_{\pi(k)}$ is also absolutely convergent, and $\infty \quad \infty$

$$\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} a_{\pi(k)}$$

3. Suppose that $\sum_{k=1}^{\infty} a_k$ is conditionally convergent. Show that for each $r \in \mathbb{R}$, there exists a permutation $\pi : \mathbb{N} \to \mathbb{N}$ such that

$$\sum_{k=1}^{\infty} a_{\pi(k)} = r \,.$$

Problem 3. In class we have shown that for each x > 0,

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$
 (*)

Show that (\star) in fact holds for all $x \in \mathbb{R}$ (that is, you need to show that (\star) holds for $x \leq 0$).

Problem 4. Let $f : \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} \exp\left(-\frac{1}{x^2}\right) & \text{if } x > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Find the *n*-th Maclaurin polynomial for f at 0.