Extra Exercise Problem Set 15

May. 172019

Problem 1. In this problem we try to prove the Lagrange Multiplier Theorem when there are two constraints. Let f, g, h be continuously differentiable functions of three variables. Suppose that subject to the constraints $g(x, y, z)=h(x, y, z)=c$, the function f attains its extrema at (x_{0}, y_{0}, z_{0}), and $(\nabla g)\left(x_{0}, y_{0}, z_{0}\right) \times(\nabla h)\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$. Complete the following.

1. Assume that the first component of $(\nabla g)\left(x_{0}, y_{0}, z_{0}\right) \times(\nabla h)\left(x_{0}, y_{0}, z_{0}\right)$ is non-zero (then in a neighborhood of $\left(x_{0}, y_{0}, z_{0}\right)$ this cross product is also non-zero). By a more general implicit function theorem, there exist $\delta>0$ and two continuously differentiable functions $\phi, \psi:\left(x_{0}-\right.$ $\left.\delta, x_{0}+\delta\right) \rightarrow \mathbb{R}$ such that

$$
g(x, \phi(x), \psi(x))=h(x, \phi(x), \psi(x))=c .
$$

Find ϕ^{\prime} and ψ^{\prime} in terms of partial derivatives of g and h.
2. Let $G(x)=f(x, \phi(x), \psi(x))$. Then $G:\left(x_{0}-\delta, x_{0}+\delta\right)$ attains its extrema at x_{0}. Deduce that

$$
(\nabla f)\left(x_{0}, y_{0}, z_{0}\right) \cdot\left[(\nabla g)\left(x_{0}, y_{0}, z_{0}\right) \times(\nabla h)\left(x_{0}, y_{0}, z_{0}\right)\right]=0
$$

3. Use (\star) to conclude that there exists $\lambda, \mu \in \mathbb{R}$ such that

$$
(\nabla f)\left(x_{0}, y_{0}, z_{0}\right)=\lambda(\nabla g)\left(x_{0}, y_{0}, z_{0}\right)+\mu(\nabla h)\left(x_{0}, y_{0}, z_{0}\right) .
$$

Problem 2. Let $f(x, y)=x^{2}+6\left(y^{2}+y+1\right)^{2}$ and $g(x, y)=x^{2}+\left(y^{3}-1\right)^{2}$. Use the method of Lagrange Multipliers to find the extreme value of f subject to the constraint $g=1$.

