Extra Exercise Problem Set 12

Apr. 272019

Problem 1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=\left\{\begin{array}{cl}
x^{2} \arctan \frac{y}{x}-y^{2} \arctan \frac{x}{y} & \text { if } x y \neq 0 \\
0 & \text { if } x y=0
\end{array}\right.
$$

Find $f_{x y}(0,0)$ and $f_{y x}(0,0)$.
Problem 2. Investigate the differentiability of the function

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x y}{x+y^{2}} & \text { if } x+y^{2} \neq 0 \\
0 & \text { if } x+y^{2}=0
\end{array}\right.
$$

Problem 3. Let $f:(a, b) \rightarrow \mathbb{R}$ be a function of one variable, and f is differentiable at $c \in(a, b)$.

1. Show that if $g(x, y)=f(x)$, then g is differentiable at (c, d) for all $d \in \mathbb{R}$.
2. Show that if $h(x, y)=f(x y)$, then h is differentiable at $\left(d, \frac{c}{d}\right)$ for all $d \neq 0$.

Problem 4. Let $R \subseteq \mathbb{R}^{2}$ be an open region, and $f: R \rightarrow \mathbb{R}$ be a function of two variables. Suppose that the partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ are bounded on R; that is, there exists a real number $M>0$ such that

$$
\left|\frac{\partial f}{\partial x}(x, y)\right|,\left|\frac{\partial f}{\partial y}(x, y)\right| \leqslant M \quad \forall(x, y) \in R .
$$

Show that f is continuous on R.

