Extra Exercise Problem Set 11

Apr. 092019

Problem 1. Prove case 1 of Theorem 9.97 through the following steps.

1. Let $A=\sum_{k=0}^{\infty} a_{k} r^{k}$, and define

$$
g(x)=f(r x+c)-A=-\sum_{k=1}^{\infty} a_{k} r^{k}+\sum_{k=1}^{\infty} a_{k} r^{k} x^{k}=\sum_{k=0}^{\infty} b_{k} x^{k}
$$

where $b_{k}=a_{k} r^{k}$ for each $k \in \mathbb{N}$ and $b_{0}=-\sum_{k=1}^{\infty} a_{k} r^{k}$. Show that the radius of convergence of g is 1 and $\sum_{k=0}^{\infty} b_{k}=0$. Moreover, show that f is continuous at $c+r$ if and only if g is continuous at 1 .
2. Let $s_{n}=b_{0}+b_{1}+\cdots+b_{n}$ and $S_{n}(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}$. Show that

$$
S_{n}(x)=(1-x)\left(s_{0}+s_{1} x+\cdots+s_{n-1} x^{n-1}\right)+s_{n} x^{n}
$$

and conclude that

$$
g(x)=\lim _{n \rightarrow \infty} S_{n}(x)=(1-x) \sum_{k=0}^{\infty} s_{k} x^{k} .
$$

3. Use (\star) to show that g is continuous at 1 . Note that you might need to use $\varepsilon-\delta$ argument.
