微積分 MA1001－A 上課筆記（精簡版） 2018．12．11．

Ching－hsiao Arthur Cheng 鄭經敘

Theorem 5.41: Cauchy Mean Value Theorem

Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b). If $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$, then there exists $c \in(a, b)$ such that

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

Theorem 5.42: L'Hôspital's Rule

Let f, g be differentiable on (a, b), and $\frac{f(x)}{g(x)}$ and $\frac{f^{\prime}(x)}{g^{\prime}(x)}$ be defined on (a, b). If $\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists, and one of the following conditions holds:

$$
\text { 1. } \lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}} g(x)=0 ; \quad \text { 2. } \lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}} g(x)=\infty \text {, }
$$

then $\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}$ exists, and

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

Remark 5.43. 1. L'Hôspital Rule can also be applied to the case when $\lim _{x \rightarrow b^{-}}$replaces $\lim _{x \rightarrow a^{+}}$ in the theorem. Moreover, the one-sided limit can also be replaced by full limit $\lim _{x \rightarrow c}$ if $c \in(a, b)$ (by considering L'Hôspital's Rule on (a, c) and (c, b), respectively).
2. L'Hôspital Rule can also be applied to limits as $x \rightarrow \infty$ or $x \rightarrow-\infty$ (and here a or b has to be changed to $-\infty$ or ∞ as well).

- Indeterminate form $\frac{0}{0}$

Example 5.44. Compute $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x}$. Last time we conclude from L'Hôspital's Rule that

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=2 \quad \text { and } \quad \lim _{x \rightarrow 0^{-}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0^{-}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=2 .
$$

Theorem 1.26 then shows that $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=2$ exists.
From the discussion in Example 5.44, using L'Hôspital's Rule in Theorem 5.42 we deduce the following L'Hôspital's Rule for the full limit case.

Theorem 5.42*

Let $a<c<b$, and f, g be differentiable functions on $(a, b) \backslash\{c\}$. Assume that $g^{\prime}(x) \neq 0$ for all $x \in(a, b) \backslash\{c\}$. If the limit of $\frac{f(x)}{g(x)}$ as x approaches c produces the indeterminate form $\frac{0}{0}$ (or $\frac{\infty}{\infty}$); that is, $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=0\left(\right.$ or $\left.\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=\infty\right)$, then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided the limit on the right exists.

- Indeterminate form $\frac{\infty}{\infty}$

Example 5.45. In this example we compute $\lim _{x \rightarrow \infty} \frac{\ln x}{x}$. Note that $\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} \ln x}{\frac{d}{d x} x}=\lim _{x \rightarrow \infty} \frac{1}{x}=0$, so L'Hôspital's Rule implies that

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} \ln x}{\frac{d}{d x} x}=0
$$

In fact, the logarithmic function $y=\ln x$ grows slower than any power function; that is,

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x^{p}}=0 \quad \forall p>0
$$

To see this, note that $\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} \ln x}{\frac{d}{d x} x^{p}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{p x^{p-1}}=\frac{1}{p} \lim _{x \rightarrow \infty} \frac{1}{x^{p}}=0$, so L'Hôspital's Rule implies that

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x^{p}}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} \ln x}{\frac{d}{d x} x^{p}}=0 .
$$

- Indeterminate form $0 \cdot \infty$

Example 5.46. Compute $\lim _{x \rightarrow \infty} e^{-x} \sqrt{x}$. Rewrite $e^{-x} \sqrt{x}$ as $\frac{\sqrt{x}}{e^{x}}$ and note that

$$
\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} \sqrt{x}}{\frac{d}{d x} e^{x}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{2 \sqrt{x}}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{1}{2 \sqrt{x} e^{x}}=0 .
$$

Therefore, L'Hôspital's Rule implies that

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{x}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} \sqrt{x}}{\frac{d}{d x} e^{x}}=0
$$

In fact, the natural exponential function $y=e^{x}$ grows faster than any power function; that is,

$$
\lim _{x \rightarrow \infty} \frac{x^{p}}{e^{x}}=0 \quad \forall p>0
$$

The proof is left as an exercise.

- Indeterminate form 1^{∞}

Example 5.47. In this example we compute $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}$. Rewrite $(1+x)^{\frac{1}{x}}$ as $e^{\frac{\ln (1+x)}{x}}$. If the limit $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}$ exists, then the continuity of the exponential function implies that

$$
\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=\exp \left(\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}\right) .
$$

Nevertheless, since $\lim _{x \rightarrow 0} \ln (1+x)=0, \lim _{x \rightarrow 0} x=0$ and

$$
\lim _{x \rightarrow 0} \frac{\frac{d}{d x} \ln (1+x)}{\frac{d}{d x} x}=\lim _{x \rightarrow 0} \frac{1}{1+x}=1
$$

L'Hôspital's Rule implies that

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x} \ln (1+x)}{\frac{d}{d x} x}=1 ;
$$

thus $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=\exp (1)=e$.

- Indeterminate form 0^{0}

Example 5.48. In this example we compute $\lim _{x \rightarrow 0^{+}}(\sin x)^{x}$. When $\sin x>0$, we have

$$
(\sin x)^{x}=e^{x \ln \sin x}=e^{\frac{\ln \sin x}{1 / x}} .
$$

Since

$$
\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x} \ln \sin x}{\frac{d}{d x} \frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{\frac{\cos x}{\sin x}}{-\frac{1}{x^{2}}}=-\lim _{x \rightarrow 0^{+}} \frac{x}{\sin x} x \cos x=0
$$

by L'Hôspital's Rule and the continuity of the natural exponential function we find that

$$
\lim _{x \rightarrow 0^{+}}(\sin x)^{x}=\lim _{x \rightarrow 0^{+}} e^{\frac{\ln \sin x}{1 / x}}=e^{0}=1
$$

- Indeterminate form $\infty-\infty$

Example 5.49. Compute $\lim _{x \rightarrow 1+}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)$.
Rewrite $\frac{1}{\ln x}-\frac{1}{x-1}=\frac{x-1-\ln x}{(x-1) \ln x}$ and note that the right-hand side produces indeterminate form $\frac{0}{0}$ as x approaches from the right. Also note that

$$
\frac{\frac{d}{d x}(x-1-\ln x)}{\frac{d}{d x}(x-1) \ln x}=\frac{1-\frac{1}{x}}{\ln x+\frac{x-1}{x}}=\frac{x-1}{x \ln x+x-1}
$$

which, as x approaches 1 from the right, again produces indeterminate form $\frac{0}{0}$. In order to find the limit of the right-hand side we compute

$$
\lim _{x \rightarrow 1^{+}} \frac{\frac{d}{d x}(x-1)}{\frac{d}{d x}(x \ln x+x-1)}=\lim _{x \rightarrow 1^{+}} \frac{1}{\ln x+1+1}=\frac{1}{2}
$$

thus L'Hôspital's Rule implies that

$$
\lim _{x \rightarrow 1^{+}} \frac{x-1}{x \ln x+x-1}=\lim _{x \rightarrow 1^{+}} \frac{\frac{d}{d x}(x-1)}{\frac{d}{d x}(x \ln x+x-1)}=\frac{1}{2} .
$$

This in turm shows that

$$
\lim _{x \rightarrow 1^{+}} \frac{x-1-\ln x}{(x-1) \ln x}=\lim _{x \rightarrow 1^{+}} \frac{\frac{d}{d x}(x-1-\ln x)}{\frac{d}{d x}(x-1) \ln x}=\lim _{x \rightarrow 1^{+}} \frac{x-1}{x \ln x+x-1}=\frac{1}{2} .
$$

5.7 The Inverse Trigonometric Functions: Differentiation

Definition 5.50

The arcsin, arccos, and arctan functions are the inverse functions of the function $f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbb{R}, g:[0, \pi] \rightarrow \mathbb{R}$, and $h:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}$, respectively, where $f(x)=\sin x, g(x)=\cos x$ and $h(x)=\tan x$. In other words,

1. $y=\arcsin x$ if and only if $\sin y=x$, where $-\frac{\pi}{2} \leqslant y \leqslant \frac{\pi}{2},-1 \leqslant x \leqslant 1$.
2. $y=\arccos x$ if and only if $\cos y=x$, where $0 \leqslant y \leqslant \pi,-1 \leqslant x \leqslant 1$.
3. $y=\arctan x$ if and only if $\tan y=x$, where $-\frac{\pi}{2}<y<\frac{\pi}{2},-\infty<x<\infty$.

Remark 5.51. Since arcsin, arccos and arctan look like the inverse function of sin, cos and tan, respectively, often times we also write \arcsin as $\sin ^{-1}$, \arccos as $\cos ^{-1}$, and \arctan as $\tan ^{-1}$.
Example 5.52. $\arcsin \frac{1}{2}=\frac{\pi}{6}, \arccos \left(\frac{-\sqrt{2}}{2}\right)=\frac{3 \pi}{4}, \operatorname{and} \arctan 1=\frac{\pi}{4}$.
Example 5.53. Suppose that $y=\arcsin x$. Then $y \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ which implies that $\cos y \geqslant 0$. Therefore, by the fact that $\sin ^{2} y+\cos ^{2} y=1$, we have

$$
\cos y=\sqrt{1-\sin ^{2} y}=\sqrt{1-x^{2}} \quad \text { if } \quad y=\arcsin x
$$

Similarly, if $y=\arccos x$, then $y \in(0, \pi)$ which implies that $\sin y \geqslant 0$. Therefore,

$$
\sin y=\sqrt{1-\cos ^{2} y}=\sqrt{1-x^{2}} \quad \text { if } \quad y=\arccos x
$$

