微積分 MA1001-A 上課筆記(精簡版) 2018.12.11.

Ching-hsiao Arthur Cheng 鄭經斅

Theorem 5.41: Cauchy Mean Value Theorem

Let $f, g: [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). If $g'(x) \neq 0$ for all $x \in (a, b)$, then there exists $c \in (a, b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Theorem 5.42: L'Hôspital's Rule

Let f, g be differentiable on (a, b), and $\frac{f(x)}{g(x)}$ and $\frac{f'(x)}{g'(x)}$ be defined on (a, b). If $\lim_{x \to a^+} \frac{f'(x)}{g'(x)}$ exists, and one of the following conditions holds: 1. $\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = 0;$ 2. $\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = \infty,$ then $\lim_{x \to a^+} \frac{f(x)}{g(x)}$ exists, and $\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}.$

- **Remark 5.43.** 1. L'Hôspital Rule can also be applied to the case when $\lim_{x\to b^-}$ replaces $\lim_{x\to a^+}$ in the theorem. Moreover, the one-sided limit can also be replaced by full limit $\lim_{x\to c}$ if $c \in (a, b)$ (by considering L'Hôspital's Rule on (a, c) and (c, b), respectively).
 - 2. L'Hôspital Rule can also be applied to limits as $x \to \infty$ or $x \to -\infty$ (and here *a* or *b* has to be changed to $-\infty$ or ∞ as well).
- Indeterminate form $\frac{0}{0}$

Example 5.44. Compute $\lim_{x\to 0} \frac{e^{2x}-1}{x}$. Last time we conclude from L'Hôspital's Rule that

$$\lim_{x \to 0^+} \frac{f(x)}{g(x)} = \lim_{x \to 0^+} \frac{f'(x)}{g'(x)} = 2 \quad \text{and} \quad \lim_{x \to 0^-} \frac{f(x)}{g(x)} = \lim_{x \to 0^-} \frac{f'(x)}{g'(x)} = 2.$$

Theorem 1.26 then shows that $\lim_{x\to 0} \frac{f(x)}{g(x)} = 2$ exists.

From the discussion in Example 5.44, using L'Hôspital's Rule in Theorem 5.42 we deduce the following L'Hôspital's Rule for the full limit case.

Theorem 5.42*

Let a < c < b, and f, g be differentiable functions on $(a, b) \setminus \{c\}$. Assume that $g'(x) \neq 0$ for all $x \in (a, b) \setminus \{c\}$. If the limit of $\frac{f(x)}{g(x)}$ as x approaches c produces the indeterminate form $\frac{0}{0}$ (or $\frac{\infty}{\infty}$); that is, $\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0$ (or $\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = \infty$), then $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$

provided the limit on the right exists.

• Indeterminate form $\frac{\infty}{\infty}$

Example 5.45. In this example we compute $\lim_{x\to\infty} \frac{\ln x}{x}$. Note that $\lim_{x\to\infty} \frac{\frac{d}{dx} \ln x}{\frac{d}{dx}x} = \lim_{x\to\infty} \frac{1}{x} = 0$, so L'Hôspital's Rule implies that

$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{\frac{d}{dx} \ln x}{\frac{d}{dx} x} = 0.$$

In fact, the logarithmic function $y = \ln x$ grows slower than any power function; that is,

$$\lim_{x \to \infty} \frac{\ln x}{x^p} = 0 \qquad \forall \, p > 0$$

To see this, note that $\lim_{x \to \infty} \frac{\frac{d}{dx} \ln x}{\frac{d}{dx} x^p} = \lim_{x \to \infty} \frac{\frac{1}{x}}{px^{p-1}} = \frac{1}{p} \lim_{x \to \infty} \frac{1}{x^p} = 0$, so L'Hôspital's Rule implies that

$$\lim_{x \to \infty} \frac{\ln x}{x^p} = \lim_{x \to \infty} \frac{\frac{d}{dx} \ln x}{\frac{d}{dx} x^p} = 0$$

• Indeterminate form $0 \cdot \infty$

Example 5.46. Compute $\lim_{x\to\infty} e^{-x}\sqrt{x}$. Rewrite $e^{-x}\sqrt{x}$ as $\frac{\sqrt{x}}{e^x}$ and note that

$$\lim_{x \to \infty} \frac{\frac{d}{dx}\sqrt{x}}{\frac{d}{dx}e^x} = \lim_{x \to \infty} \frac{\frac{1}{2\sqrt{x}}}{e^x} = \lim_{x \to \infty} \frac{1}{2\sqrt{x}e^x} = 0.$$

Therefore, L'Hôspital's Rule implies that

$$\lim_{x \to \infty} \frac{\sqrt{x}}{e^x} = \lim_{x \to \infty} \frac{\frac{d}{dx}\sqrt{x}}{\frac{d}{dx}e^x} = 0.$$

In fact, the natural exponential function $y = e^x$ grows faster than any power function; that is,

$$\lim_{x \to \infty} \frac{x^p}{e^x} = 0 \qquad \forall \, p > 0$$

The proof is left as an exercise.

• Indeterminate form 1^{∞}

Example 5.47. In this example we compute $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$. Rewrite $(1+x)^{\frac{1}{x}}$ as $e^{\frac{\ln(1+x)}{x}}$. If the limit $\lim_{x\to 0} \frac{\ln(1+x)}{x}$ exists, then the continuity of the exponential function implies that

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \exp\left(\lim_{x \to 0} \frac{\ln(1+x)}{x}\right).$$

Nevertheless, since $\lim_{x\to 0} \ln(1+x) = 0$, $\lim_{x\to 0} x = 0$ and

$$\lim_{x \to 0} \frac{\frac{d}{dx} \ln(1+x)}{\frac{d}{dx}x} = \lim_{x \to 0} \frac{1}{1+x} = 1$$

L'Hôspital's Rule implies that

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{\frac{d}{dx}\ln(1+x)}{\frac{d}{dx}x} = 1;$$

thus $\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \exp(1) = e.$

• Indeterminate form 0⁰

Example 5.48. In this example we compute $\lim_{x\to 0^+} (\sin x)^x$. When $\sin x > 0$, we have

$$(\sin x)^x = e^{x \ln \sin x} = e^{\frac{\ln \sin x}{1/x}}$$

Since

$$\lim_{x \to 0^+} \frac{\frac{d}{dx} \ln \sin x}{\frac{d}{dx} \frac{1}{x}} = \lim_{x \to 0^+} \frac{\frac{\cos x}{\sin x}}{-\frac{1}{x^2}} = -\lim_{x \to 0^+} \frac{x}{\sin x} x \cos x = 0,$$

by L'Hôspital's Rule and the continuity of the natural exponential function we find that

$$\lim_{x \to 0^+} (\sin x)^x = \lim_{x \to 0^+} e^{\frac{\ln \sin x}{1/x}} = e^0 = 1.$$

• Indeterminate form $\infty - \infty$

Example 5.49. Compute $\lim_{x \to 1+} \left(\frac{1}{\ln x} - \frac{1}{x-1} \right).$

Rewrite $\frac{1}{\ln x} - \frac{1}{x-1} = \frac{x-1-\ln x}{(x-1)\ln x}$ and note that the right-hand side produces indeterminate form $\frac{0}{0}$ as x approaches from the right. Also note that

 $\frac{\frac{d}{dx}(x-1-\ln x)}{\frac{d}{dx}(x-1)\ln x} = \frac{1-\frac{1}{x}}{\ln x + \frac{x-1}{x}} = \frac{x-1}{x\ln x + x-1}$

which, as x approaches 1 from the right, again produces indeterminate form $\frac{0}{0}$. In order to find the limit of the right-hand side we compute

$$\lim_{x \to 1^+} \frac{\frac{d}{dx}(x-1)}{\frac{d}{dx}(x\ln x + x - 1)} = \lim_{x \to 1^+} \frac{1}{\ln x + 1 + 1} = \frac{1}{2};$$

thus L'Hôspital's Rule implies that

$$\lim_{x \to 1^+} \frac{x-1}{x \ln x + x - 1} = \lim_{x \to 1^+} \frac{\frac{d}{dx}(x-1)}{\frac{d}{dx}(x \ln x + x - 1)} = \frac{1}{2}.$$

This in turm shows that

$$\lim_{x \to 1^+} \frac{x - 1 - \ln x}{(x - 1)\ln x} = \lim_{x \to 1^+} \frac{\frac{d}{dx}(x - 1 - \ln x)}{\frac{d}{dx}(x - 1)\ln x} = \lim_{x \to 1^+} \frac{x - 1}{x\ln x + x - 1} = \frac{1}{2}.$$

5.7 The Inverse Trigonometric Functions: Differentiation

Definition 5.50

The arcsin, arccos, and arctan functions are the inverse functions of the function $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}, g: [0, \pi] \to \mathbb{R}, \text{ and } h: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}, \text{ respectively, where}$ $f(x) = \sin x, g(x) = \cos x \text{ and } h(x) = \tan x.$ In other words, 1. $y = \arcsin x$ if and only if $\sin y = x$, where $-\frac{\pi}{2} \le y \le \frac{\pi}{2}, -1 \le x \le 1.$ 2. $y = \arccos x$ if and only if $\cos y = x$, where $0 \le y \le \pi, -1 \le x \le 1.$ 3. $y = \arctan x$ if and only if $\tan y = x$, where $-\frac{\pi}{2} < y < \frac{\pi}{2}, -\infty < x < \infty.$ **Remark 5.51.** Since arcsin, arccos and arctan look like the inverse function of sin, cos and tan, respectively, often times we also write arcsin as \sin^{-1} , arccos as \cos^{-1} , and arctan as \tan^{-1} .

Example 5.52. $\arcsin \frac{1}{2} = \frac{\pi}{6}, \arccos \left(\frac{-\sqrt{2}}{2}\right) = \frac{3\pi}{4}, \text{ and } \arctan 1 = \frac{\pi}{4}.$

Example 5.53. Suppose that $y = \arcsin x$. Then $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ which implies that $\cos y \ge 0$. Therefore, by the fact that $\sin^2 y + \cos^2 y = 1$, we have

$$\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2}$$
 if $y = \arcsin x$

Similarly, if $y = \arccos x$, then $y \in (0, \pi)$ which implies that $\sin y \ge 0$. Therefore,

$$\sin y = \sqrt{1 - \cos^2 y} = \sqrt{1 - x^2} \qquad \text{if} \quad y = \arccos x$$