微積分 MA1001-A 上課筆記(精簡版) 2018.12.06.

Ching-hsiao Arthur Cheng 鄭經斅

Definition 5.8

The function $\ln: (0, \infty) \to \mathbb{R}$ is defined by

$$\ln x = \int_1^x \frac{1}{t} dt \qquad \forall \, x > 0 \,.$$

• $\ln : (0, \infty) \to \mathbb{R}$. is one-to-one and onto.

Definition 5.25

The natural exponential function $\exp : \mathbb{R} \to (0, \infty)$ is a function defined by

$$\exp(x) = y$$
 if and only if $x = \ln y$.

Definition 5.26

Let a > 0 be a real number. For each $x \in \mathbb{R}$, the exponential function to the base a, denote by $y = a^x$, is defined by $a^x \equiv \exp(x \ln a)$. In other words,

$$a^x = \exp(x \ln a) \qquad \forall x \in \mathbb{R}.$$

• The range and the strict monotonicity of the exponential functions

The exponential function to the base a is a strictly decreasing function if a > 1, while the exponential function to the base a is a strictly decreasing function if 0 < a < 1. Moreover, for $0 < a \neq 1$, the exponential function $a^{\cdot} : \mathbb{R} \to (0, \infty)$ is one-to-one and onto.

For
$$a > 0$$
, $\frac{d}{dx}a^x = a^x \ln a$ for all $x \in \mathbb{R}$ (so $\int a^x dx = \frac{a^x}{\ln a} + C$).

Definition 5.38

Let $0 < a \neq 1$ be a real number. The logarithmic function to the base a, denoted by \log_a , is the inverse function of the exponential function to the base a. In other words,

 $y = \log_a x$ if and only if $a^y = x$.

Theorem 5.39

Let $0 < a \neq 1$. Then $\log_a x = \frac{\ln x}{\ln a}$ for all x > 0.

By Theorem 5.39, we find that $\frac{d}{dx}\log_a x = \frac{1}{x\ln a} \qquad \forall x > 0$.

5.6 Indeterminate Forms and L'Hôspital's Rule

Theorem 5.41: Cauchy Mean Value Theorem

Let $f, g: [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). If $g'(x) \neq 0$ for all $x \in (a, b)$, then there exists $c \in (a, b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Proof. Let $h: [a, b] \to \mathbb{R}$ be defined by

$$h(x) = (f(x) - f(a))(g(b) - g(a)) - (f(b) - f(a))(g(x) - g(a)).$$

Then h(a) = h(b) = 0, and h is differentiable on (a, b). Then Rolle's Theorem implies that there exists $c \in (a, b)$ such that h'(c) = 0; thus for some $c \in (a, b)$,

$$f'(c)(g(b) - g(a)) - (f(b) - f(a))g'(c) = 0.$$

Since $g'(x) \neq 0$ for all $x \in (a, b)$, the Mean Value Theorem implies that $g(b) \neq g(a)$. Therefore, the equality above implies that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

for some $c \in (a, b)$.

Theorem 5.42: L'Hôspital's Rule

Let f, g be differentiable on (a, b), and $\frac{f(x)}{g(x)}$ and $\frac{f'(x)}{g'(x)}$ be defined on (a, b). If $\lim_{x \to a^+} \frac{f'(x)}{g'(x)}$ exists, and one of the following conditions holds: 1. $\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = 0;$ 2. $\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = \infty,$ then $\lim_{x \to a^+} \frac{f(x)}{g(x)}$ exists, and $\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}.$

Proof. We first prove L'Hôspital's rule for the case that $\lim_{x\to a^+} f(x) = \lim_{x\to a^+} g(x) = 0$. Define $F, G: (a, b) \to \mathbb{R}$ by

$$F(x) = \begin{cases} f(x) & \text{if } x \in (a, b), \\ 0 & \text{if } x = a, \end{cases} \quad \text{and} \quad G(x) = \begin{cases} g(x) & \text{if } x \in (a, b), \\ 0 & \text{if } x = a. \end{cases}$$

Then for all $x \in (a, b)$, F, G are continuous on the closed [a, x], and differentiable on the open interval with end-points (a, x). Therefore, the Cauchy Mean Value Theorem implies that there exists a point c between a and x such that

$$\frac{f'(c)}{g'(c)} = \frac{F'(c)}{G'(c)} = \frac{F(x) - F(a)}{G(x) - G(a)} = \frac{F(x)}{G(x)} = \frac{f(x)}{g(x)}$$

Since c approaches a as x approaches a, we have

$$\lim_{x \to a^+} \frac{f'(c)}{g'(c)} = \lim_{c \to a^+} \frac{f'(c)}{g'(c)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)};$$

thus

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(c)}{g'(c)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

Next we prove L'Hôspital's rule for the case that $\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = \infty$. Let $L = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$ and $\varepsilon > 0$ be given. Then there exists $\delta_1 > 0$ such that $\left| \frac{f'(x)}{g'(x)} - L \right| < \frac{\varepsilon}{2}$ whenever $a < x < a + \delta_1 (< b)$.

Let $d = a + \delta_1$. For a < x < d, the Cauchy mean value theorem implies that for some c in (x, d) such that

$$\frac{f(x) - f(d)}{g(x) - g(d)} = \frac{f'(c)}{g'(c)}.$$

Note that the quotient above belongs to $\left(L - \frac{\varepsilon}{2}, L + \frac{\varepsilon}{2}\right)$ (if a < x < d). Moreover,

$$\frac{f(x) - f(d)}{g(x) - g(d)} - \frac{f(x)}{g(x)} = \frac{\left(f(x) - f(d)\right)g(d) - \left(g(x) - g(d)\right)f(d)}{\left(g(x) - g(d)\right)g(x)} = \frac{f'(c)}{g'(c)}\frac{g(d)}{g(x)} - \frac{f(d)}{g(x)};$$

thus

$$\Big|\frac{f(x) - f(d)}{g(x) - g(d)} - \frac{f(x)}{g(x)}\Big| \le \Big(|L| + \frac{\varepsilon}{2}\Big)\Big|\frac{g(d)}{g(x)}\Big| + \Big|\frac{f(d)}{g(x)}\Big| \qquad \text{whenever} \quad a < x < d\,.$$

Since $\lim_{x\to a^+} g(x) = \infty$, the right-hand side of the inequality above approaches zero as x approaches a from the right. Therefore, there exists $0 < \delta < \delta_1$, such that

$$\left|\frac{f(x) - f(d)}{g(x) - g(d)} - \frac{f(x)}{g(x)}\right| < \frac{\varepsilon}{2} \qquad \text{whenever} \quad a < x < a + \delta \left(< d < b \right).$$

Therefore, if $a < x < a + \delta$,

$$\left|\frac{f(x)}{g(x)} - L\right| \le \left|\frac{f(x) - f(d)}{g(x) - g(d)} - \frac{f(x)}{g(x)}\right| + \left|\frac{f(x) - f(d)}{g(x) - g(d)} - L\right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

which concludes the theorem.

- **Remark 5.43.** 1. L'Hôspital Rule can also be applied to the case when $\lim_{x\to b^-}$ replaces $\lim_{x\to a^+}$ in the theorem. Moreover, the one-sided limit can also be replaced by full limit $\lim_{x\to c}$ if $c \in (a, b)$ (by considering L'Hôspital's Rule on (a, c) and (c, b), respectively). See Example 5.44 for more details on the full limit case.
 - 2. L'Hôspital Rule can also be applied to limits as $x \to \infty$ or $x \to -\infty$ (and here *a* or *b* has to be changed to $-\infty$ or ∞ as well). To see this, we note that if $F(x) = f(\frac{1}{x})$ and $G(x) = g(\frac{1}{x})$, then either $\lim_{x \to 0^+} F(x) = \lim_{x \to 0^+} G(x) = 0$ or $\lim_{x \to 0^+} F(x) = \lim_{x \to 0^+} G(x) = \infty$; thus L'Hôspital Rule implies that

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{y \to 0^+} \frac{f'(\frac{1}{y})}{g'(\frac{1}{y})} = \lim_{y \to 0^+} \frac{f'(\frac{1}{y})\frac{-1}{y^2}}{g'(\frac{1}{y})\frac{-1}{y^2}} = \lim_{y \to 0^+} \frac{F'(y)}{G'(y)} = \lim_{y \to 0^+} \frac{F(y)}{G(y)} = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$

• Indeterminate form $\frac{0}{0}$

Example 5.44. Compute $\lim_{x\to 0} \frac{e^{2x}-1}{x}$.

Let $f(x) = e^{2x} - 1$ and g(x) = x. Then f, g are differentiable on (0, 1) and $g(x) \neq 0, g'(x) \neq 0$ for all $x \in (0, 1)$. Moreover,

$$\lim_{x \to 0^+} \frac{f'(x)}{g'(x)} = \lim_{x \to 0^+} \frac{2e^{2x}}{1} = 2$$

and $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} g(x) = 0$. Therefore, L'Hôspital's Rule implies that

$$\lim_{x \to 0^+} \frac{f(x)}{g(x)} = \lim_{x \to 0^+} \frac{f'(x)}{g'(x)} = 2.$$

Similarly, by the fact that

- 1. f, g are differentiable on (-1, 0) and $g(x) \neq 0, g'(x) \neq 0$ for all $x \in (-1, 0)$,
- 2. $\lim_{x \to 0^-} \frac{f'(x)}{g'(x)} = \lim_{x \to 0^-} \frac{2e^{2x}}{1} = 2,$

3.
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} g(x) = 0,$$

L'Hôspital's Rule implies that $\lim_{x\to 0^-} \frac{f(x)}{g(x)} = \lim_{x\to 0^-} \frac{f'(x)}{g'(x)} = 2$. Theorem 1.26 then shows that $\lim_{x\to 0} \frac{f(x)}{g(x)} = 2$ exists.