微積分 MA1001－A 上課筆記（精簡版） 2018．12．06．

Definition 5.8

The function $\ln :(0, \infty) \rightarrow \mathbb{R}$ is defined by

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t \quad \forall x>0
$$

- $\ln :(0, \infty) \rightarrow \mathbb{R}$. is one-to-one and onto.

Definition 5.25

The natural exponential function $\exp : \mathbb{R} \rightarrow(0, \infty)$ is a function defined by

$$
\exp (x)=y \quad \text { if and only if } \quad x=\ln y
$$

Definition 5.26

Let $a>0$ be a real number. For each $x \in \mathbb{R}$, the exponential function to the base a, denote by $y=a^{x}$, is defined by $a^{x} \equiv \exp (x \ln a)$. In other words,

$$
a^{x}=\exp (x \ln a) \quad \forall x \in \mathbb{R} .
$$

- The range and the strict monotonicity of the exponential functions

The exponential function to the base a is a strictly decreasing function if $a>1$, while the exponential function to the base a is a strictly decreasing function if $0<a<1$. Moreover, for $0<a \neq 1$, the exponential function $a^{\cdot}: \mathbb{R} \rightarrow(0, \infty)$ is one-to-one and onto.

Corollary 5.33

For $a>0, \frac{d}{d x} a^{x}=a^{x} \ln a$ for all $x \in \mathbb{R}\left(\right.$ so $\left.\int a^{x} d x=\frac{a^{x}}{\ln a}+C\right)$.

Definition 5.38

Let $0<a \neq 1$ be a real number. The logarithmic function to the base a, denoted by $\log _{a}$, is the inverse function of the exponential function to the base a. In other words,

$$
y=\log _{a} x \quad \text { if and only if } \quad a^{y}=x .
$$

Theorem 5.39

Let $0<a \neq 1$. Then $\log _{a} x=\frac{\ln x}{\ln a}$ for all $x>0$.

By Theorem 5.39, we find that $\frac{d}{d x} \log _{a} x=\frac{1}{x \ln a} \quad \forall x>0$.

5.6 Indeterminate Forms and L'Hôspital's Rule

Theorem 5.41: Cauchy Mean Value Theorem

Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b). If $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$, then there exists $c \in(a, b)$ such that

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

Proof. Let $h:[a, b] \rightarrow \mathbb{R}$ be defined by

$$
h(x)=(f(x)-f(a))(g(b)-g(a))-(f(b)-f(a))(g(x)-g(a)) .
$$

Then $h(a)=h(b)=0$, and h is differentiable on (a, b). Then Rolle's Theorem implies that there exists $c \in(a, b)$ such that $h^{\prime}(c)=0$; thus for some $c \in(a, b)$,

$$
f^{\prime}(c)(g(b)-g(a))-(f(b)-f(a)) g^{\prime}(c)=0 .
$$

Since $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$, the Mean Value Theorem implies that $g(b) \neq g(a)$. Therefore, the equality above implies that

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

for some $c \in(a, b)$.

Theorem 5.42: L'Hôspital's Rule

Let f, g be differentiable on (a, b), and $\frac{f(x)}{g(x)}$ and $\frac{f^{\prime}(x)}{g^{\prime}(x)}$ be defined on (a, b). If $\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists, and one of the following conditions holds:

$$
\text { 1. } \lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}} g(x)=0 ; \quad \text { 2. } \lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}} g(x)=\infty \text {, }
$$

then $\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}$ exists, and

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

Proof. We first prove L'Hôspital's rule for the case that $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}} g(x)=0$. Define $F, G:(a, b) \rightarrow \mathbb{R}$ by

$$
F(x)=\left\{\begin{array}{cl}
f(x) & \text { if } x \in(a, b), \\
0 & \text { if } x=a,
\end{array} \quad \text { and } \quad G(x)=\left\{\begin{array}{cl}
g(x) & \text { if } x \in(a, b), \\
0 & \text { if } x=a .
\end{array}\right.\right.
$$

Then for all $x \in(a, b), F, G$ are continuous on the closed $[a, x]$, and differentiable on the open interval with end-points (a, x). Therefore, the Cauchy Mean Value Theorem implies that there exists a point c between a and x such that

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{F^{\prime}(c)}{G^{\prime}(c)}=\frac{F(x)-F(a)}{G(x)-G(a)}=\frac{F(x)}{G(x)}=\frac{f(x)}{g(x)} .
$$

Since c approaches a as x approaches a, we have

$$
\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(c)}{g^{\prime}(c)}=\lim _{c \rightarrow a^{+}} \frac{f^{\prime}(c)}{g^{\prime}(c)}=\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

thus

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(c)}{g^{\prime}(c)}=\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Next we prove L'Hôspital's rule for the case that $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}} g(x)=\infty$. Let $L=\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ and $\varepsilon>0$ be given. Then there exists $\delta_{1}>0$ such that

$$
\left|\frac{f^{\prime}(x)}{g^{\prime}(x)}-L\right|<\frac{\varepsilon}{2} \quad \text { whenever } \quad a<x<a+\delta_{1}(<b) .
$$

Let $d=a+\delta_{1}$. For $a<x<d$, the Cauchy mean value theorem implies that for some c in (x, d) such that

$$
\frac{f(x)-f(d)}{g(x)-g(d)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

Note that the quotient above belongs to $\left(L-\frac{\varepsilon}{2}, L+\frac{\varepsilon}{2}\right.$) (if $a<x<d$). Moreover,

$$
\frac{f(x)-f(d)}{g(x)-g(d)}-\frac{f(x)}{g(x)}=\frac{(f(x)-f(d)) g(d)-(g(x)-g(d)) f(d)}{(g(x)-g(d)) g(x)}=\frac{f^{\prime}(c)}{g^{\prime}(c)} \frac{g(d)}{g(x)}-\frac{f(d)}{g(x)} ;
$$

thus

$$
\left|\frac{f(x)-f(d)}{g(x)-g(d)}-\frac{f(x)}{g(x)}\right| \leqslant\left(|L|+\frac{\varepsilon}{2}\right)\left|\frac{g(d)}{g(x)}\right|+\left|\frac{f(d)}{g(x)}\right| \quad \text { whenever } \quad a<x<d
$$

Since $\lim _{x \rightarrow a^{+}} g(x)=\infty$, the right-hand side of the inequality above approaches zero as x approaches a from the right. Therefore, there exists $0<\delta<\delta_{1}$, such that

$$
\left|\frac{f(x)-f(d)}{g(x)-g(d)}-\frac{f(x)}{g(x)}\right|<\frac{\varepsilon}{2} \quad \text { whenever } \quad a<x<a+\delta(<d<b) .
$$

Therefore, if $a<x<a+\delta$,

$$
\left|\frac{f(x)}{g(x)}-L\right| \leqslant\left|\frac{f(x)-f(d)}{g(x)-g(d)}-\frac{f(x)}{g(x)}\right|+\left|\frac{f(x)-f(d)}{g(x)-g(d)}-L\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

which concludes the theorem.
Remark 5.43. 1. L'Hôspital Rule can also be applied to the case when $\lim _{x \rightarrow b^{-}}$replaces $\lim _{x \rightarrow a^{+}}$ in the theorem. Moreover, the one-sided limit can also be replaced by full limit $\lim _{x \rightarrow c}$ if $c \in(a, b)$ (by considering L'Hôspital's Rule on (a, c) and (c, b), respectively). See Example 5.44 for more details on the full limit case.
2. L'Hôspital Rule can also be applied to limits as $x \rightarrow \infty$ or $x \rightarrow-\infty$ (and here a or b has to be changed to $-\infty$ or ∞ as well). To see this, we note that if $F(x)=f\left(\frac{1}{x}\right)$ and $G(x)=g\left(\frac{1}{x}\right)$, then either $\lim _{x \rightarrow 0^{+}} F(x)=\lim _{x \rightarrow 0^{+}} G(x)=0$ or $\lim _{x \rightarrow 0^{+}} F(x)=\lim _{x \rightarrow 0^{+}} G(x)=\infty ;$ thus L'Hôspital Rule implies that

$$
\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{y \rightarrow 0^{+}} \frac{f^{\prime}\left(\frac{1}{y}\right)}{g^{\prime}\left(\frac{1}{y}\right)}=\lim _{y \rightarrow 0^{+}} \frac{f^{\prime}\left(\frac{1}{y}\right) \frac{-1}{y^{2}}}{g^{\prime}\left(\frac{1}{y}\right) \frac{-1}{y^{2}}}=\lim _{y \rightarrow 0^{+}} \frac{F^{\prime}(y)}{G^{\prime}(y)}=\lim _{y \rightarrow 0^{+}} \frac{F(y)}{G(y)}=\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}
$$

- Indeterminate form $\frac{0}{0}$

Example 5.44. Compute $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x}$.
Let $f(x)=e^{2 x}-1$ and $g(x)=x$. Then f, g are differentiable on $(0,1)$ and $g(x) \neq$ $0, g^{\prime}(x) \neq 0$ for all $x \in(0,1)$. Moreover,

$$
\lim _{x \rightarrow 0^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 0^{+}} \frac{2 e^{2 x}}{1}=2
$$

and $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} g(x)=0$. Therefore, L'Hôspital's Rule implies that

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=2
$$

Similarly, by the fact that

1. f, g are differentiable on $(-1,0)$ and $g(x) \neq 0, g^{\prime}(x) \neq 0$ for all $x \in(-1,0)$,
2. $\lim _{x \rightarrow 0^{-}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 0^{-}} \frac{2 e^{2 x}}{1}=2$,
3. $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} g(x)=0$,

L'Hôspital's Rule implies that $\lim _{x \rightarrow 0^{-}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0^{-}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=2$. Theorem 1.26 then shows that $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=2$ exists.

