微積分 MA1001-A 上課筆記(精簡版) 2018.12.04.

Ching-hsiao Arthur Cheng 鄭經斅

Theorem 5.1: Inverse Function Differentiation

Let f be a function that is differentiable on an interval I. If f has an inverse function g, then g is differentiable at any x for which $f'(g(x)) \neq 0$. Moreover,

$$g'(x) = \frac{1}{f'(g(x))}$$
 for all x with $f'(g(x)) \neq 0$.

Definition 5.8

The function $\ln : (0, \infty) \to \mathbb{R}$ is defined by

$$\ln x = \int_1^x \frac{1}{t} \, dt \qquad \forall \, x > 0 \, .$$

• $\ln : (0, \infty) \to \mathbb{R}$. is one-to-one and onto. Therefore, there exists a unique $e \in (1, \infty)$ such that $\ln e = 1$. In fact, 2 < e < 3.

• Logarithmic Laws

Theorem 5.14: Logarithmic properties of $y = \ln x$ Let a, b be positive numbers and r is rational. Then

1. $\ln 1 = 0;$ 2. $\ln(ab) = \ln a + \ln b;$

3. $\ln(a^r) = r \ln a;$ 4. $\ln\left(\frac{a}{b}\right) = \ln a - \ln b.$

Definition 5.25

The natural exponential function $\exp : \mathbb{R} \to (0, \infty)$ is a function defined by

 $\exp(x) = y$ if and only if $x = \ln y$.

By the definition of the natural exponential function, we have

 $\exp(\ln x) = x \quad \forall x \in (0, \infty) \qquad \text{and} \qquad \ln(\exp(x)) = x \quad \forall x \in \mathbb{R}.$ (5.4.1)

Definition 5.26

Let a > 0 be a real number. For each $x \in \mathbb{R}$, the exponential function to the base a, denote by $y = a^x$, is defined by $a^x \equiv \exp(x \ln a)$. In other words,

$$a^x = \exp(x \ln a) \qquad \forall x \in \mathbb{R}.$$

Remark 5.28. The function $y = e^x$ is identical to the function $y = \exp(x)$ since

$$e^x = \exp(x \ln e) = \exp(x) \qquad \forall x \in \mathbb{R}.$$

Remark 5.29. By the definition of the natural exponential function,

$$\ln(a^x) = \ln(\exp(x \ln a)) = x \ln a \qquad \forall a > 0 \text{ and } x \in \mathbb{R}.$$
(5.4.2)

5.4.1 Properties of Exponential Functions

• The law of exponentials

- (a) If a > 0, then $a^{x+y} = a^x a^y$ for all $x, y \in \mathbb{R}$.
- (b) If a > 0, then $a^{x-y} = \frac{a^x}{a^y}$ for all $x, y \in \mathbb{R}$: Using (a), we obtain that $a^{x-y}a^y = a^{x-y+y} = a^x \quad \forall x, y \in \mathbb{R};$

thus $a^{x-y} = \frac{a^x}{a^y}$ for all $x, y \in \mathbb{R}$.

(c) If a, b > 0, then $(ab)^x = a^x b^x$ for all $x \in \mathbb{R}$: By the definition of the exponential functions,

$$(ab)^{x} = e^{x \ln(ab)} = e^{x(\ln a + \ln b)} = e^{x \ln a + x \ln b} = e^{x \ln a} e^{x \ln b} = a^{x} b^{x}$$

(d) If a, b > 0, then $\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$ for all $x \in \mathbb{R}$: Using (b), we obtain that $\left(\frac{a}{b}\right)^x = e^{x \ln \frac{a}{b}} = e^{x(\ln a - \ln b)} = \frac{e^{x \ln a}}{e^{x \ln b}} = \frac{a^x}{b^x}.$

(e) If a > 0, then $(a^x)^y = a^{xy}$ for all $x, y \in \mathbb{R}$: Using (5.4.2),

$$(a^x)^y = e^{y \ln a^x} = e^{xy \ln a} = a^{xy}.$$

• The range and the strict monotonicity of the exponential functions

Note that Theorem 5.6 implies that $\exp : \mathbb{R} \to (0, \infty)$ is strictly increasing. Suppose that a > 1. Then $\ln a > 0$ which further implies that

$$a^{x_1} = \exp(x_1 \ln a) < \exp(x_2 \ln a) = a^{x_2} \qquad \forall x_1 < x_2$$

Similarly, if 0 < a < 1, the exponential function to the base a is a strictly decreasing function.

Moreover, since exp : $\mathbb{R} \to (0, \infty)$ is onto, we must have that for $0 < a \neq 1$, the range of the exponential function to the base a is also \mathbb{R} . Therefore, for $0 < a \neq 1$, the exponential function $a^{\cdot} : \mathbb{R} \to (0, \infty)$ is one-to-one and onto.

• The differentiation of the exponential functions

Theorem 5.30

 $\frac{d}{dx}e^x = e^x \text{ for all } x \in \mathbb{R}.$

Proof. Define $f: (0, \infty) \to \mathbb{R}$ and $g: \mathbb{R} \to (0, \infty)$ by $f(x) = \ln x$ and $g(x) = \exp(x) = e^x$. Then f and g are inverse functions to each other, and the Inverse Function Differentiation implies that

$$g'(x) = \frac{1}{f'(g(x))} \quad \forall x \in \mathbb{R} \text{ with } f'(g(x)) \neq 0.$$

Since $f'(x) = \frac{1}{x}, f'(g(x)) = \frac{1}{g(x)} = \exp(-x) \neq 0$ for all $x \in \mathbb{R}$; thus
 $g'(x) = g(x) \quad \forall x \in \mathbb{R}.$

Corollary 5.31

1.
$$\int_0^a e^x dx = e^a - 1 \text{ for all } a \in \mathbb{R}; \qquad 2. \quad \int e^x dx = e^x + C.$$

The following corollary is a direct consequence of Theorem 5.30 and the chain rule.

Corollary 5.32

Let f be a differentiable function defined on an interval I. Then

$$\frac{d}{dx}e^{f(x)} = e^x f'(x) \qquad \forall x \in I.$$

Corollary 5.33

1. For
$$a > 0$$
, $\frac{d}{dx}a^x = a^x \ln a$ for all $x \in \mathbb{R}$ (so $\int a^x dx = \frac{a^x}{\ln a} + C$).

2. Let r be a real number. Then $\frac{d}{dx}x^r = rx^{r-1}$ for all x > 0.

3. Let f, g be differentiable functions defined on an interval I. Then

$$\frac{d}{dx}|f(x)|^{g(x)} = |f(x)|^{g(x)} \left[g'(x)\ln|f(x)| + \frac{f'(x)}{f(x)}g(x)\right] \qquad \forall x \in I \text{ with } f(x) \neq 0.$$

Proof. The corollary holds because $a^x = e^{x \ln a}$, $x^r = e^{r \ln x}$, and $|f(x)|^{g(x)} = e^{g(x) \ln |f(x)|}$. \Box

Example 5.34. $\frac{d}{dx}e^{-\frac{3}{x}} = e^{-\frac{3}{x}}\frac{d}{dx}\left(-\frac{3}{x}\right) = \frac{3e^{-3/x}}{x^2}$ for all $x \neq 0$. **Example 5.35.** Let $f: (0, \infty) \to \mathbb{R}$ be defined by $f(x) = x^x$. Then

$$f'(x) = \frac{d}{dx}e^{x\ln x} = e^{x\ln x}\frac{d}{dx}(x\ln x) = x^x(\ln x + 1).$$

Example 5.36. Find the indefinite integral $\int 5xe^{-x^2} dx$.

Let
$$u = -x^2$$
. Then $du = -2xdx$; thus

$$\int 5xe^{-x^2} dx = -\frac{5}{2} \int e^{-x^2} (-2x) dx = -\frac{5}{2} \int e^u du = -\frac{5}{2} e^u + C = -\frac{5}{2} e^{-x^2} + C.$$

Example 5.37. Compute the definite integral $\int_{-1}^{0} e^x \cos(e^x) dx$. Let $u = e^x$. Then $du = e^x dx$: thus

$$\int_{-1}^{0} e^x \cos(e^x) \, dx = \int_{e^{-1}}^{1} \cos u \, du = \sin u \Big|_{u=e^{-1}}^{u=1} = \sin 1 - \sin(e^{-1}) \, .$$

5.4.2 The number e

By the mean value theorem for integrals, for each x > 0 there exists $d \in [1, 1 + x]$ such that

$$\frac{n(1+x)}{x} = \frac{1}{x} \int_{1}^{1+x} \frac{1}{t} dt = \frac{1}{dt}$$

which implies that

$$(1+x)^{\frac{1}{x}} = \exp\left(\ln(1+x)^{\frac{1}{x}}\right) = \exp\left(\frac{\ln(1+x)}{x}\right) = \exp\left(\frac{1}{d}\right).$$

By the fact that the natural exponential function is continuous, we find that

$$\lim_{x \to 0^+} (1+x)^{\frac{1}{x}} = \lim_{x \to 0^+} \exp\left(\frac{1}{d}\right) = \lim_{d \to 1} \exp\left(\frac{1}{d}\right) = e$$

Note that the limit above also shows that $e = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$.

5.5 Logarithmic Functions to Bases Other than e

Definition 5.38

Let $0 < a \neq 1$ be a real number. The logarithmic function to the base a, denoted by \log_a , is the inverse function of the exponential function to the base a. In other words,

$$y = \log_a x$$
 if and only if $a^y = x$.

Theorem 5.39

Let
$$0 < a \neq 1$$
. Then $\log_a x = \frac{\ln x}{\ln a}$ for all $x > 0$.

Proof. Let $y = \log_a x$. Then $a^y = x$; thus (5.4.2) implies that

$$y\ln a = \ln(a^y) = \ln x$$

which shows $y = \frac{\ln x}{\ln a}$.

5.5.1 Properties of logarithmic functions

• Logarithmic laws

The following theorem is a direct consequence of Theorem 5.14 and 5.39.

Theorem 5.40: Logarithmic properties of $y = \log_a x$ Let a, b, c be positive numbers, $a \neq 1$, and r is rational. Then 1. $\log_a 1 = 0$; 2. $\log_a (bc) = \log_a b + \log_b c$; 3. $\log_a(a^x) = x$ for all $x \in \mathbb{R}$; 4. $a^{\log_a x} = x$ for all x > 0; 5. $\log_a \left(\frac{c}{b}\right) = \log_a c - \log_a b$.

• The change of base formula

We have the following identity

$$\log_a c = \frac{\log_b c}{\log_b a} \qquad \forall a, b, c > 0, a, b \neq 1.$$

In fact, if $d = \log_a c$, then $c = a^d$; thus $\log_b c = d \log_b a$ which implies the identity above.