微積分 MA1001－A 上課筆記（精簡版） 2018．12．04．

Theorem 5.1: Inverse Function Differentiation

Let f be a function that is differentiable on an interval I. If f has an inverse function g, then g is differentiable at any x for which $f^{\prime}(g(x)) \neq 0$. Moreover,

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))} \quad \text { for all } x \text { with } f^{\prime}(g(x)) \neq 0
$$

Definition 5.8

The function $\ln :(0, \infty) \rightarrow \mathbb{R}$ is defined by

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t \quad \forall x>0
$$

- $\ln :(0, \infty) \rightarrow \mathbb{R}$. is one-to-one and onto. Therefore, there exists a unique $e \in(1, \infty)$ such that $\ln e=1$. In fact, $2<e<3$.

- Logarithmic Laws

Theorem 5.14: Logarithmic properties of $y=\ln x$

Let a, b be positive numbers and r is rational. Then

1. $\ln 1=0$;
2. $\ln (a b)=\ln a+\ln b ;$
3. $\ln \left(a^{r}\right)=r \ln a$;
4. $\ln \left(\frac{a}{b}\right)=\ln a-\ln b$.

Definition 5.25

The natural exponential function $\exp : \mathbb{R} \rightarrow(0, \infty)$ is a function defined by

$$
\exp (x)=y \quad \text { if and only if } \quad x=\ln y
$$

By the definition of the natural exponential function, we have

$$
\begin{equation*}
\exp (\ln x)=x \quad \forall x \in(0, \infty) \quad \text { and } \quad \ln (\exp (x))=x \quad \forall x \in \mathbb{R} \tag{5.4.1}
\end{equation*}
$$

Definition 5.26

Let $a>0$ be a real number. For each $x \in \mathbb{R}$, the exponential function to the base a, denote by $y=a^{x}$, is defined by $a^{x} \equiv \exp (x \ln a)$. In other words,

$$
a^{x}=\exp (x \ln a) \quad \forall x \in \mathbb{R} .
$$

Remark 5.28. The function $y=e^{x}$ is identical to the function $y=\exp (x)$ since

$$
e^{x}=\exp (x \ln e)=\exp (x) \quad \forall x \in \mathbb{R}
$$

Remark 5.29. By the definition of the natural exponential function,

$$
\begin{equation*}
\ln \left(a^{x}\right)=\ln (\exp (x \ln a))=x \ln a \quad \forall a>0 \text { and } x \in \mathbb{R} . \tag{5.4.2}
\end{equation*}
$$

5.4.1 Properties of Exponential Functions

- The law of exponentials

(a) If $a>0$, then $a^{x+y}=a^{x} a^{y}$ for all $x, y \in \mathbb{R}$.
(b) If $a>0$, then $a^{x-y}=\frac{a^{x}}{a^{y}}$ for all $x, y \in \mathbb{R}$: Using (a), we obtain that

$$
a^{x-y} a^{y}=a^{x-y+y}=a^{x} \quad \forall x, y \in \mathbb{R} ;
$$

thus $a^{x-y}=\frac{a^{x}}{a^{y}}$ for all $x, y \in \mathbb{R}$.
(c) If $a, b>0$, then $(a b)^{x}=a^{x} b^{x}$ for all $x \in \mathbb{R}$: By the definition of the exponential functions,

$$
(a b)^{x}=e^{x \ln (a b)}=e^{x(\ln a+\ln b)}=e^{x \ln a+x \ln b}=e^{x \ln a} e^{x \ln b}=a^{x} b^{x} .
$$

(d) If $a, b>0$, then $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$ for all $x \in \mathbb{R}$: Using (b), we obtain that

$$
\left(\frac{a}{b}\right)^{x}=e^{x \ln \frac{a}{b}}=e^{x(\ln a-\ln b)}=\frac{e^{x \ln a}}{e^{x \ln b}}=\frac{a^{x}}{b^{x}} .
$$

(e) If $a>0$, then $\left(a^{x}\right)^{y}=a^{x y}$ for all $x, y \in \mathbb{R}$: Using (5.4.2),

$$
\left(a^{x}\right)^{y}=e^{y \ln a^{x}}=e^{x y \ln a}=a^{x y} .
$$

- The range and the strict monotonicity of the exponential functions

Note that Theorem 5.6 implies that $\exp : \mathbb{R} \rightarrow(0, \infty)$ is strictly increasing. Suppose that $a>1$. Then $\ln a>0$ which further implies that

$$
a^{x_{1}}=\exp \left(x_{1} \ln a\right)<\exp \left(x_{2} \ln a\right)=a^{x_{2}} \quad \forall x_{1}<x_{2} .
$$

Similarly, if $0<a<1$, the exponential function to the base a is a strictly decreasing function.

Moreover, since $\exp : \mathbb{R} \rightarrow(0, \infty)$ is onto, we must have that for $0<a \neq 1$, the range of the exponential function to the base a is also \mathbb{R}. Therefore, for $0<a \neq 1$, the exponential function $a^{\prime}: \mathbb{R} \rightarrow(0, \infty)$ is one-to-one and onto.

- The differentiation of the exponential functions

Theorem 5.30

$$
\frac{d}{d x} e^{x}=e^{x} \text { for all } x \in \mathbb{R} .
$$

Proof. Define $f:(0, \infty) \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow(0, \infty)$ by $f(x)=\ln x$ and $g(x)=\exp (x)=e^{x}$. Then f and g are inverse functions to each other, and the Inverse Function Differentiation implies that

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))} \quad \forall x \in \mathbb{R} \text { with } f^{\prime}(g(x)) \neq 0
$$

Since $f^{\prime}(x)=\frac{1}{x}, f^{\prime}(g(x))=\frac{1}{g(x)}=\exp (-x) \neq 0$ for all $x \in \mathbb{R}$; thus

$$
g^{\prime}(x)=g(x) \quad \forall x \in \mathbb{R}
$$

Corollary 5.31

1. $\int_{0}^{a} e^{x} d x=e^{a}-1$ for all $a \in \mathbb{R} ; \quad$ 2. $\int e^{x} d x=e^{x}+C$.

The following corollary is a direct consequence of Theorem 5.30 and the chain rule.

Corollary 5.32

Let f be a differentiable function defined on an interval I. Then

$$
\frac{d}{d x} e^{f(x)}=e^{x} f^{\prime}(x) \quad \forall x \in I
$$

Corollary 5.33

1. For $a>0, \frac{d}{d x} a^{x}=a^{x} \ln a$ for all $x \in \mathbb{R}\left(\right.$ so $\left.\int a^{x} d x=\frac{a^{x}}{\ln a}+C\right)$.
2. Let r be a real number. Then $\frac{d}{d x} x^{r}=r x^{r-1}$ for all $x>0$.
3. Let f, g be differentiable functions defined on an interval I. Then

$$
\frac{d}{d x}|f(x)|^{g(x)}=|f(x)|^{g(x)}\left[g^{\prime}(x) \ln |f(x)|+\frac{f^{\prime}(x)}{f(x)} g(x)\right] \quad \forall x \in I \text { with } f(x) \neq 0
$$

Proof. The corollary holds because $a^{x}=e^{x \ln a}, x^{r}=e^{r \ln x}$, and $|f(x)|^{g(x)}=e^{g(x) \ln |f(x)|}$.

Example 5.34. $\frac{d}{d x} e^{-\frac{3}{x}}=e^{-\frac{3}{x}} \frac{d}{d x}\left(-\frac{3}{x}\right)=\frac{3 e^{-3 / x}}{x^{2}}$ for all $x \neq 0$.
Example 5.35. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be defined by $f(x)=x^{x}$. Then

$$
f^{\prime}(x)=\frac{d}{d x} e^{x \ln x}=e^{x \ln x} \frac{d}{d x}(x \ln x)=x^{x}(\ln x+1)
$$

Example 5.36. Find the indefinite integral $\int 5 x e^{-x^{2}} d x$.
Let $u=-x^{2}$. Then $d u=-2 x d x$; thus

$$
\int 5 x e^{-x^{2}} d x=-\frac{5}{2} \int e^{-x^{2}}(-2 x) d x=-\frac{5}{2} \int e^{u} d u=-\frac{5}{2} e^{u}+C=-\frac{5}{2} e^{-x^{2}}+C .
$$

Example 5.37. Compute the definite integral $\int_{-1}^{0} e^{x} \cos \left(e^{x}\right) d x$.
Let $u=e^{x}$. Then $d u=e^{x} d x$; thus

$$
\int_{-1}^{0} e^{x} \cos \left(e^{x}\right) d x=\int_{e^{-1}}^{1} \cos u d u=\left.\sin u\right|_{u=e^{-1}} ^{u=1}=\sin 1-\sin \left(e^{-1}\right)
$$

5.4.2 The number e

By the mean value theorem for integrals, for each $x>0$ there exists $d \in[1,1+x]$ such that

$$
\frac{\ln (1+x)}{x}=\frac{1}{x} \int_{1}^{1+x} \frac{1}{t} d t=\frac{1}{d}
$$

which implies that

$$
(1+x)^{\frac{1}{x}}=\exp \left(\ln (1+x)^{\frac{1}{x}}\right)=\exp \left(\frac{\ln (1+x)}{x}\right)=\exp \left(\frac{1}{d}\right)
$$

By the fact that the natural exponential function is continuous, we find that

$$
\lim _{x \rightarrow 0^{+}}(1+x)^{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \exp \left(\frac{1}{d}\right)=\lim _{d \rightarrow 1} \exp \left(\frac{1}{d}\right)=e
$$

Note that the limit above also shows that $e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$.

5.5 Logarithmic Functions to Bases Other than e

Definition 5.38

Let $0<a \neq 1$ be a real number. The logarithmic function to the base a, denoted by $\log _{a}$, is the inverse function of the exponential function to the base a. In other words,

$$
y=\log _{a} x \quad \text { if and only if } \quad a^{y}=x .
$$

Theorem 5.39

Let $0<a \neq 1$. Then $\log _{a} x=\frac{\ln x}{\ln a}$ for all $x>0$.

Proof. Let $y=\log _{a} x$. Then $a^{y}=x$; thus (5.4.2) implies that

$$
y \ln a=\ln \left(a^{y}\right)=\ln x
$$

which shows $y=\frac{\ln x}{\ln a}$.

5.5.1 Properties of logarithmic functions

- Logarithmic laws

The following theorem is a direct consequence of Theorem 5.14 and 5.39.

Theorem 5.40: Logarithmic properties of $y=\log _{a} x$

Let a, b, c be positive numbers, $a \neq 1$, and r is rational. Then

1. $\log _{a} 1=0$;
2. $\log _{a}(b c)=\log _{a} b+\log _{b} c ;$
3. $\log _{a}\left(a^{x}\right)=x$ for all $x \in \mathbb{R}$;
4. $a^{\log _{a} x}=x$ for all $x>0$;
5. $\log _{a}\left(\frac{c}{b}\right)=\log _{a} c-\log _{a} b$.

- The change of base formula

We have the following identity

$$
\log _{a} c=\frac{\log _{b} c}{\log _{b} a} \quad \forall a, b, c>0, a, b \neq 1
$$

In fact, if $d=\log _{a} c$, then $c=a^{d}$; thus $\log _{b} c=d \log _{b} a$ which implies the identity above.

