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Definition 5.8

The function In : (0,00) — R is defined by

lna::f 1dt Va>0.
1 t

Theorem 5.10

ilnle for all z > 0.
x x

Corollary 5.11

The function In : (0,00) — R is strictly increasing on (0, 00), and the graph of y = Inx

is concave downward on (0, o).

e The range of y = Inx is R; thus combining with the corollary above, we have
In: (0,00) — R is one-to-one and onto.

Moreover, there exists a unique e € (2,3) such that Ine = 1.

e Logarithmic Laws

The function y = Inx is in fact the logarithmic function to the base e; that is, In = log,, so

we have the following

Theorem 5.14: Logarithmic properties of y = Inx

Let a, b be positive numbers and r is rational. Then
1. In1=0; 2. In(ab) =Ina + Inb;
3. In(a") =rhhg 4. In (%) =Ina—Inb.

Theorem 5.17

If f is a differentiable function on an interval I, then In|f| is differentiable at those

point x € [ satisfying f(z) # 0. Moreover,

%hﬂf(m)} = f'(z) for all x € I with f(z) #0.




5.3 Integrations Related to y =Inx

Theorem 5.17 implies the following

Theorem 5.20

lx—nx J f/(l‘) T = 11 xr
1. de = In |z| + C; 2. fﬂx)d In|f(z)|+C.

Example 5.21. Compute jzil dx. From observation, the numerator is a half of the
x

derivative of the denominator, so

T 1 2z 1 1
dr = = dr = =Inl|z* +1 = _In(z*+1 .
Jx2+1 T 2Jx2—|—1 T 2n|a:+ |+ C 211(:1:—1— )+ C

1

rinx

Example 5.22. Compute J dz. Let u=1Inz. Then du = 1 dx; thus
x

1 1
J dx:f—du:ln|u|+(§':1n|lnx\+C.
u

zlnx

Theorem 5.23

1. Jsinxdmz—cosxjtc; 2. Jcosxdaﬁ:sinx—l—C;
3. jtanxd:z::—ln\cos:r]+C’:1n\secx]+C;

4. f secxdr = In|secz + tanz| + C.

Proof. We only prove 4 Let ¢ = tan —. Then sinx—it cosx = L- and dm—Ldt'
' Y prove = -y TR T 1t 142
thus
1+t 2 2 —2
Jsecxd:v:f i —dt:f—dt:f—dt
1—t214¢2 1—¢2 (t—1)(t+1)
1 1 t+1
— | [ - =]t =i+ —mp -1+ c=m [+ 0
J[t+1 t—J njt+1=Inft =1+ C=1n|;—|+C

The conclusion then follows from the identity

2
t+1 sin § + cos 3 (sm§+cos§) I+ 2sin g cos 3

_ 1 <nZ _ z in2 T

t—1 sin 5 'COS2 sin” 3

1+sinx

=————— = —(secx +tanx). D
COS ¥

— cos? 5 —COST



Finally we compute j In x dx for a > 0. Suppose first that a > 1. Following the idea
1

of Example 4.5, we let r = an and x; = r' as well as a partition P = {1 = 2y < 11 <
-+ <z, = a} of [1,a]. Then the Riemann sum of f for the partition P given by the right
end-point rule, which happens to be the upper sum of f for the partition P, is

S(P) = Z In(z;)(x; —xiq) = Z In(ri)(ri — i) = (r — 1) lnrz i1
‘ ‘ i=1
o d
Note that ir'™" = —r*; thus
dr

n o n d i d n . dTn+1—7” [<n+1>rn_1}(r_1)_rn+1+r
;zr 1:;%7“ Zr — =

:Jizl Cdr r—1 (r—1)2
™ —(n4+1)r"+1  nar—(n+1)a+1
S R

By the fact that n = hl—a,
Inr

ralna—alna —alnr +1nr
S(P) = —] )

Since |P|| — 0 is equivalent to that r — 1,

lim S(P) = lim ralna —alna —alnr +1Inr _ i
|[P|—0 r—1 r—1 dr

(Talna—alna—alnr+1nr)
r=1

=alna—a-+1.

If 0 < a < 1, by Remark 4.16 it suffices to show that an — 1asn approaches infinity.
Nevertheless, an = 1 /(1/ a)% and the denominator approaches 1 as n approaches infinity;

thus lim ax = 1 evenif 0 < a < 1.

n—0o0

Theorem 5.24

1. f Inxdr =alna —a+1 for all a > 0;
1

2. f Inzdr=xzlnz —z+ C.




5.4 Exponential Functions

In the previous section we have shown that the natural logarithmic function In : (0,0) — R
is one-to-one and onto. Therefore, for each a € R there exists a unique b € (0, 0) satisfying
a = Inb. The map a — b is called the natural exponential function. To be more precise, we

have the following

Definition 5.25

The natural exponential function exp : R — (0, o0) is a function defined by

exp(z) =y if and only if r=1Iny.

By the definition of the natural exponential function, we have
exp(lnz) =2 Vaze (0,0) and In(exp(z)) =2z VYzeR. (5.4.1)

Therefore, exp and In are inverse functions to each other; thus exp : R — (0, 00) is one-to-
one, onto, and strictly increasing. Note that by the definition, exp(0) = 1.

Let a > 0 be a real number. If r € Q, a” is a well-defined positive number and the
logarithmic laws implies that

Ina" =rlna.

By the definition of the natural exponential function, a” = exp(rlna) for all r € Q. Since
exp : R — (0,00) is continuous, for a real number x, we shall defined a® as exp(xIna) and
this induces the following

Definition 5.26

Let a > 0 be a real number. For each x € R, the exponential function to the base a,

denote by y = a”, is defined by a” = exp(xIna). In other words,

a® =exp(zlna) VzeR.

Remark 5.27. For each x € R, the number 17 is 1 since 1* = exp(zIn1) = exp(0) = 1.
Remark 5.28. The function y = e” is identical to the function y = exp(x) since
e’ = exp(zlne) = exp(x) VzeR.

Therefore, we often write exp(z) as e” as well (even though e”, when z is a irrational number,

has to be defined through the natural exponential function).



Remark 5.29. By the definition of the natural exponential function,

In(a”) = In(exp(xIna)) =xlna  Va>0and zeR. (5.4.2)

5.4.1 Properties of Exponential Functions

e The law of exponentials

(a) If @ > 0, then a*™¥ = a®a? for all z,y € R: First we show the case when a = e. Let

exp(z) = ¢ and exp(y) = d or equivalently, x = Inc and y = Ind. Then
™ = exp(x + y) = exp(Inc + Ind) = exp(In(cd)) = cd = e”e? .

For general a > 0, by the definition of exponential functions,

az+y — e(z+y)lna — 6avlna+ylna _ 6avlnaeylna — a®aY V.T,y ceR.
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