微積分 MA1001－A 上課筆記（精簡版） 2018．11．29．

Ching－hsiao Arthur Cheng 鄭經敘

Definition 5.8

The function $\ln :(0, \infty) \rightarrow \mathbb{R}$ is defined by

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t \quad \forall x>0
$$

Theorem 5.10

$\frac{d}{d x} \ln x=\frac{1}{x}$ for all $x>0$.

Corollary 5.11

The function $\ln :(0, \infty) \rightarrow \mathbb{R}$ is strictly increasing on $(0, \infty)$, and the graph of $y=\ln x$ is concave downward on $(0, \infty)$.

- The range of $y=\ln x$ is \mathbb{R}; thus combining with the corollary above, we have

$$
\ln :(0, \infty) \rightarrow \mathbb{R} \text { is one-to-one and onto. }
$$

Moreover, there exists a unique $e \in(2,3)$ such that $\ln e=1$.

- Logarithmic Laws

The function $y=\ln x$ is in fact the logarithmic function to the base e; that is, $\ln =\log _{e}$, so we have the following

Theorem 5.14: Logarithmic properties of $y=\ln x$

Let a, b be positive numbers and r is rational. Then

1. $\ln 1=0$;
2. $\ln (a b)=\ln a+\ln b ;$
3. $\ln \left(a^{r}\right)=r \ln a$;
4. $\ln \left(\frac{a}{b}\right)=\ln a-\ln b$.

Theorem 5.17

If f is a differentiable function on an interval I, then $\ln |f|$ is differentiable at those point $x \in I$ satisfying $f(x) \neq 0$. Moreover,

$$
\frac{d}{d x} \ln |f(x)|=\frac{f^{\prime}(x)}{f(x)} \quad \text { for all } x \in I \text { with } f(x) \neq 0
$$

5.3 Integrations Related to $y=\ln x$

Theorem 5.17 implies the following

Theorem 5.20

1. $\int \frac{1}{x} d x=\ln |x|+C$;
2. $\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+C$.

Example 5.21. Compute $\int \frac{x}{x^{2}+1} d x$. From observation, the numerator is a half of the derivative of the denominator, so

$$
\int \frac{x}{x^{2}+1} d x=\frac{1}{2} \int \frac{2 x}{x^{2}+1} d x=\frac{1}{2} \ln \left|x^{2}+1\right|+C=\frac{1}{2} \ln \left(x^{2}+1\right)+C .
$$

Example 5.22. Compute $\int \frac{1}{x \ln x} d x$. Let $u=\ln x$. Then $d u=\frac{1}{x} d x$; thus

$$
\int \frac{1}{x \ln x} d x=\int \frac{1}{u} d u=\ln |u|+C=\ln |\ln x|+C .
$$

Theorem 5.23

1. $\int \sin x d x=-\cos x+C ; \quad$ 2. $\int \cos x d x=\sin x+C$;
2. $\int \tan x d x=-\ln |\cos x|+C=\ln |\sec x|+C$;
3. $\int \sec x d x=\ln |\sec x+\tan x|+C$.

Proof. We only prove 4. Let $t=\tan \frac{x}{2}$. Then $\sin x=\frac{2 t}{1+t^{2}}, \cos x=\frac{1-t^{2}}{1+t^{2}}$ and $d x=\frac{2 d t}{1+t^{2}}$; thus

$$
\begin{aligned}
\int \sec x d x & =\int \frac{1+t^{2}}{1-t^{2}} \frac{2}{1+t^{2}} d t=\int \frac{2}{1-t^{2}} d t=\int \frac{-2}{(t-1)(t+1)} d t \\
& =\int\left[\frac{1}{t+1}-\frac{1}{t-1}\right] d t=\ln |t+1|-\ln |t-1|+C=\ln \left|\frac{t+1}{t-1}\right|+C
\end{aligned}
$$

The conclusion then follows from the identity

$$
\begin{aligned}
\frac{t+1}{t-1} & =\frac{\sin \frac{x}{2}+\cos \frac{x}{2}}{\sin \frac{x}{2}-\cos \frac{x}{2}}=\frac{\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^{2}}{\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}}=\frac{1+2 \sin \frac{x}{2} \cos \frac{x}{2}}{-\cos x} \\
& =-\frac{1+\sin x}{\cos x}=-(\sec x+\tan x) .
\end{aligned}
$$

Finally we compute $\int_{1}^{a} \ln x d x$ for $a>0$. Suppose first that $a>1$. Following the idea of Example 4.5, we let $r=a^{\frac{1}{n}}$ and $x_{i}=r^{i}$, as well as a partition $\mathcal{P}=\left\{1=x_{0}<x_{1}<\right.$ $\left.\cdots<x_{n}=a\right\}$ of $[1, a]$. Then the Riemann sum of f for the partition \mathcal{P} given by the right end-point rule, which happens to be the upper sum of f for the partition \mathcal{P}, is

$$
S(\mathcal{P})=\sum_{i=1}^{n} \ln \left(x_{i}\right)\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n} \ln \left(r^{i}\right)\left(r^{i}-r^{i-1}\right)=(r-1) \ln r \sum_{i=1}^{n} i r^{i-1}
$$

Note that $i r^{i-1}=\frac{d}{d r} r^{i}$; thus

$$
\begin{aligned}
\sum_{i=1}^{n} i r^{i-1} & =\sum_{i=1}^{n} \frac{d}{d r} r^{i}=\frac{d}{d r} \sum_{i=1}^{n} r^{i}=\frac{d}{d r} \frac{r^{n+1}-r}{r-1}=\frac{\left[(n+1) r^{n}-1\right](r-1)-r^{n+1}+r}{(r-1)^{2}} \\
& =\frac{n r^{n+1}-(n+1) r^{n}+1}{(r-1)^{2}}=\frac{n a r-(n+1) a+1}{(r-1)^{2}} .
\end{aligned}
$$

By the fact that $n=\frac{\ln a}{\ln r}$,

$$
S(\mathcal{P})=\frac{r a \ln a-a \ln a-a \ln r+\ln r}{r-1}
$$

Since $\|\mathcal{P}\| \rightarrow 0$ is equivalent to that $r \rightarrow 1$,

$$
\begin{aligned}
\lim _{\|\mathcal{P}\| \rightarrow 0} S(\mathcal{P}) & =\lim _{r \rightarrow 1} \frac{r a \ln a-a \ln a-a \ln r+\ln r}{r-1}=\left.\frac{d}{d r}\right|_{r=1}(r a \ln a-a \ln a-a \ln r+\ln r) \\
& =a \ln a-a+1
\end{aligned}
$$

If $0<a<1$, by Remark 4.16 it suffices to show that $a^{\frac{1}{n}} \rightarrow 1$ as n approaches infinity. Nevertheless, $a^{\frac{1}{n}}=1 /(1 / a)^{\frac{1}{n}}$ and the denominator approaches 1 as n approaches infinity; thus $\lim _{n \rightarrow \infty} a^{\frac{1}{n}}=1$ even if $0<a<1$.

Theorem 5.24

1. $\int_{1}^{a} \ln x d x=a \ln a-a+1$ for all $a>0$;
2. $\int \ln x d x=x \ln x-x+C$.

5.4 Exponential Functions

In the previous section we have shown that the natural logarithmic function $\ln :(0, \infty) \rightarrow \mathbb{R}$ is one-to-one and onto. Therefore, for each $a \in \mathbb{R}$ there exists a unique $b \in(0, \infty)$ satisfying $a=\ln b$. The map $a \mapsto b$ is called the natural exponential function. To be more precise, we have the following

Definition 5.25

The natural exponential function $\exp : \mathbb{R} \rightarrow(0, \infty)$ is a function defined by

$$
\exp (x)=y \quad \text { if and only if } \quad x=\ln y
$$

By the definition of the natural exponential function, we have

$$
\begin{equation*}
\exp (\ln x)=x \quad \forall x \in(0, \infty) \quad \text { and } \quad \ln (\exp (x))=x \quad \forall x \in \mathbb{R} \tag{5.4.1}
\end{equation*}
$$

Therefore, exp and ln are inverse functions to each other; thus $\exp : \mathbb{R} \rightarrow(0, \infty)$ is one-toone, onto, and strictly increasing. Note that by the definition, $\exp (0)=1$.

Let $a>0$ be a real number. If $r \in \mathbb{Q}, a^{r}$ is a well-defined positive number and the logarithmic laws implies that

$$
\ln a^{r}=r \ln a
$$

By the definition of the natural exponential function, $a^{r}=\exp (r \ln a)$ for all $r \in \mathbb{Q}$. Since $\exp : \mathbb{R} \rightarrow(0, \infty)$ is continuous, for a real number x, we shall defined a^{x} as $\exp (x \ln a)$ and this induces the following

Definition 5.26

Let $a>0$ be a real number. For each $x \in \mathbb{R}$, the exponential function to the base a, denote by $y=a^{x}$, is defined by $a^{x} \equiv \exp (x \ln a)$. In other words,

$$
a^{x}=\exp (x \ln a) \quad \forall x \in \mathbb{R}
$$

Remark 5.27. For each $x \in \mathbb{R}$, the number 1^{x} is 1 since $1^{x}=\exp (x \ln 1)=\exp (0)=1$.
Remark 5.28. The function $y=e^{x}$ is identical to the function $y=\exp (x)$ since

$$
e^{x}=\exp (x \ln e)=\exp (x) \quad \forall x \in \mathbb{R} .
$$

Therefore, we often write $\exp (x)$ as e^{x} as well (even though e^{x}, when x is a irrational number, has to be defined through the natural exponential function).

Remark 5.29. By the definition of the natural exponential function,

$$
\begin{equation*}
\ln \left(a^{x}\right)=\ln (\exp (x \ln a))=x \ln a \quad \forall a>0 \text { and } x \in \mathbb{R} . \tag{5.4.2}
\end{equation*}
$$

5.4.1 Properties of Exponential Functions

- The law of exponentials
(a) If $a>0$, then $a^{x+y}=a^{x} a^{y}$ for all $x, y \in \mathbb{R}$: First we show the case when $a=e$. Let $\exp (x)=c$ and $\exp (y)=d$ or equivalently, $x=\ln c$ and $y=\ln d$. Then

$$
e^{x+y}=\exp (x+y)=\exp (\ln c+\ln d)=\exp (\ln (c d))=c d=e^{x} e^{y}
$$

For general $a>0$, by the definition of exponential functions,

$$
a^{x+y}=e^{(x+y) \ln a}=e^{x \ln a+y \ln a}=e^{x \ln a} e^{y \ln a}=a^{x} a^{y} \quad \forall x, y \in \mathbb{R}
$$

