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Definition 5.8
The function ln : (0,8) Ñ R is defined by

lnx =

ż x

1

1

t
dt @x ą 0 .

Theorem 5.10
d

dx
lnx =

1

x
for all x ą 0.

Corollary 5.11

The function ln : (0,8) Ñ R is strictly increasing on (0,8), and the graph of y = lnx

is concave downward on (0,8).

‚ The range of y = lnx is R; thus combining with the corollary above, we have

ln : (0,8) Ñ R is one-to-one and onto.

Moreover, there exists a unique e P (2, 3) such that ln e = 1.

‚ Logarithmic Laws

The function y = lnx is in fact the logarithmic function to the base e; that is, ln = loge, so
we have the following
Theorem 5.14: Logarithmic properties of y = lnx

Let a, b be positive numbers and r is rational. Then

1. ln 1 = 0; 2. ln(ab) = ln a+ ln b;

3. ln(ar) = r ln a; 4. ln
(a
b

)
= ln a ´ ln b.

Theorem 5.17
If f is a differentiable function on an interval I, then ln |f | is differentiable at those
point x P I satisfying f(x) ‰ 0. Moreover,

d

dx
ln

ˇ

ˇf(x)
ˇ

ˇ =
f 1(x)

f(x)
for all x P I with f(x) ‰ 0 .



5.3 Integrations Related to y = lnx
Theorem 5.17 implies the following
Theorem 5.20

1.
ż

1

x
dx = ln |x| + C; 2.

ż

f 1(x)

f(x)
dx = ln

ˇ

ˇf(x)
ˇ

ˇ + C.

Example 5.21. Compute
ż

x

x2 + 1
dx. From observation, the numerator is a half of the

derivative of the denominator, so
ż

x

x2 + 1
dx =

1

2

ż

2x

x2 + 1
dx =

1

2
ln |x2 + 1| + C =

1

2
ln(x2 + 1) + C .

Example 5.22. Compute
ż

1

x lnx
dx. Let u = lnx. Then du =

1

x
dx; thus

ż

1

x lnx
dx =

ż

1

u
du = ln |u| + C = ln | lnx| + C .

Theorem 5.23

1.
ż

sinx dx = ´ cosx+ C; 2.
ż

cosx dx = sinx+ C;

3.
ż

tanx dx = ´ ln | cosx| + C = ln | secx| + C;

4.
ż

secx dx = ln | secx+ tanx| + C.

Proof. We only prove 4. Let t = tan x

2
. Then sinx =

2t

1 + t2
, cos x =

1 ´ t2

1 + t2
and dx =

2dt

1 + t2
;

thus
ż

secx dx =

ż

1 + t2

1 ´ t2
2

1 + t2
dt =

ż

2

1 ´ t2
dt =

ż

´2

(t ´ 1)(t+ 1)
dt

=

ż [ 1

t+ 1
´

1

t ´ 1

]
dt = ln |t+ 1| ´ ln |t ´ 1| + C = ln

ˇ

ˇ

ˇ

t+ 1

t ´ 1

ˇ

ˇ

ˇ
+ C .

The conclusion then follows from the identity

t+ 1

t ´ 1
=

sin x
2
+ cos x

2

sin x
2

´ cos x
2

=

(
sin x

2
+ cos x

2

)2
sin2 x

2
´ cos2 x

2

=
1 + 2 sin x

2
cos x

2

´ cosx

= ´
1 + sinx

cosx = ´(secx+ tanx) . ˝



Finally we compute
ż a

1
lnx dx for a ą 0. Suppose first that a ą 1. Following the idea

of Example 4.5, we let r = a
1
n and xi = ri, as well as a partition P = t1 = x0 ă x1 ă

¨ ¨ ¨ ă xn = au of [1, a]. Then the Riemann sum of f for the partition P given by the right
end-point rule, which happens to be the upper sum of f for the partition P , is

S(P) =
n

ÿ

i=1

ln(xi)(xi ´ xi´1) =
n

ÿ

i=1

ln(ri)(ri ´ ri´1) = (r ´ 1) ln r
n

ÿ

i=1

iri´1 .

Note that iri´1 =
d

dr
ri; thus

n
ÿ

i=1

iri´1 =
n

ÿ

i=1

d

dr
ri =

d

dr

n
ÿ

i=1

ri =
d

dr

rn+1 ´ r

r ´ 1
=

[
(n+ 1)rn ´ 1

]
(r ´ 1) ´ rn+1 + r

(r ´ 1)2

=
nrn+1 ´ (n+ 1)rn + 1

(r ´ 1)2
=

nar ´ (n+ 1)a+ 1

(r ´ 1)2
.

By the fact that n =
ln a

ln r
,

S(P) =
ra ln a ´ a ln a ´ a ln r + ln r

r ´ 1
.

Since }P} Ñ 0 is equivalent to that r Ñ 1,

lim
}P}Ñ0

S(P) = lim
rÑ1

ra ln a ´ a ln a ´ a ln r + ln r

r ´ 1
=

d

dr

ˇ

ˇ

ˇ

r=1

(
ra ln a ´ a ln a ´ a ln r + ln r

)
= a ln a ´ a+ 1 .

If 0 ă a ă 1, by Remark 4.16 it suffices to show that a
1
n Ñ 1 as n approaches infinity.

Nevertheless, a 1
n = 1/(1/a)

1
n and the denominator approaches 1 as n approaches infinity;

thus lim
nÑ8

a
1
n = 1 even if 0 ă a ă 1.

Theorem 5.24

1.
ż a

1
lnx dx = a ln a ´ a+ 1 for all a ą 0;

2.
ż

lnx dx = x lnx ´ x+ C.



5.4 Exponential Functions
In the previous section we have shown that the natural logarithmic function ln : (0,8) Ñ R
is one-to-one and onto. Therefore, for each a P R there exists a unique b P (0,8) satisfying
a = ln b. The map a ÞÑ b is called the natural exponential function. To be more precise, we
have the following
Definition 5.25

The natural exponential function exp : R Ñ (0,8) is a function defined by

exp(x) = y if and only if x = ln y .

By the definition of the natural exponential function, we have

exp(lnx) = x @x P (0,8) and ln(exp(x)) = x @x P R . (5.4.1)

Therefore, exp and ln are inverse functions to each other; thus exp : R Ñ (0,8) is one-to-
one, onto, and strictly increasing. Note that by the definition, exp(0) = 1.

Let a ą 0 be a real number. If r P Q, ar is a well-defined positive number and the
logarithmic laws implies that

ln ar = r ln a .

By the definition of the natural exponential function, ar = exp(r ln a) for all r P Q. Since
exp : R Ñ (0,8) is continuous, for a real number x, we shall defined ax as exp(x ln a) and
this induces the following
Definition 5.26

Let a ą 0 be a real number. For each x P R, the exponential function to the base a,

denote by y = ax, is defined by ax ” exp(x ln a). In other words,

ax = exp(x ln a) @x P R .

Remark 5.27. For each x P R, the number 1x is 1 since 1x = exp(x ln 1) = exp(0) = 1.

Remark 5.28. The function y = ex is identical to the function y = exp(x) since

ex = exp(x ln e) = exp(x) @x P R .

Therefore, we often write exp(x) as ex as well (even though ex, when x is a irrational number,
has to be defined through the natural exponential function).



Remark 5.29. By the definition of the natural exponential function,

ln(ax) = ln(exp(x ln a)) = x ln a @ a ą 0 and x P R . (5.4.2)

5.4.1 Properties of Exponential Functions
‚ The law of exponentials

(a) If a ą 0, then ax+y = axay for all x, y P R: First we show the case when a = e. Let
exp(x) = c and exp(y) = d or equivalently, x = ln c and y = ln d. Then

ex+y = exp(x+ y) = exp(ln c+ ln d) = exp(ln(cd)) = cd = exey .

For general a ą 0, by the definition of exponential functions,

ax+y = e(x+y) ln a = ex ln a+y ln a = ex ln aey ln a = axay @x, y P R .
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