微積分 MA1001－A 上課筆記（精簡版） 2018．11．08．

Definition 4．6：Partition of Intervals and Riemann Sums

A finite set $\mathcal{P}=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ is said to be a partition of the closed interval $[a, b]$ if $a=x_{0}<x_{1}<\cdots<x_{n}=b$ ．Such a partition \mathcal{P} is usually denoted by $\left\{a=x_{0}<x_{1}<\right.$ $\left.\cdots<x_{n}\right\}$ ．The norm of \mathcal{P} ，denoted by $\|\mathcal{P}\|$ ，is the number $\max \left\{x_{i}-x_{i-1} \mid 1 \leqslant i \leqslant n\right\}$ ； that is，

$$
\|\mathcal{P}\| \equiv \max \left\{x_{i}-x_{i-1} \mid 1 \leqslant i \leqslant n\right\} .
$$

A partition $\mathcal{P}=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$ is called regular if $x_{i}-x_{i-1}=\|\mathcal{P}\|$ for all $1 \leqslant i \leqslant n$ ．

Let $f:[a, b] \rightarrow \mathbb{R}$ be a function．A Riemann sum of f for the the partition $\mathcal{P}=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$ of $[a, b]$ is a sum which takes the form

$$
\sum_{i=1}^{n} f\left(c_{i}\right)\left(x_{i}-x_{i-1}\right)
$$

where the set $\Xi=\left\{c_{0}, c_{1}, \cdots, c_{n-1}\right\}$ satisfies that $x_{i-1} \leqslant c_{i} \leqslant x_{i}$ for each $1 \leqslant i \leqslant n$ ．

Definition 4．7：Riemann Integrals－黎曼積分

Let $f:[a, b] \rightarrow \mathbb{R}$ be a function．f is said to be Riemann integrable on $[a, b]$ if there exists a real number A such that for every $\varepsilon>0$ ，there exists $\delta>0$ such that if \mathcal{P} is partition of $[a, b]$ satisfying $\|\mathcal{P}\|<\delta$ ，then any Riemann sums for the partition \mathcal{P} belongs to the interval $(A-\varepsilon, A+\varepsilon)$ ．Such a number A（is unique and）is called the Riemann integral of f on $[a, b]$ and is denoted by $\int_{[a, b]} f(x) d x$ ．

Remark 4．8．For conventional reason，the Riemann integral of f over the interval with left end－point a and right－end point b is written as $\int_{a}^{b} f(x) d x$ ，and is called the definite integral of f from a to b ．The function f sometimes is called the integrand of the integral．

We also note that here in the representation of the integral，x is a dummy variable；that is，we can use any symbol to denote the independent variable；thus

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t=\int_{a}^{b} f(u) d u
$$

and etc．
The following example shows that no all functions are Riemann integrable．

Example 4.9. Consider the Dirichlet function

$$
f(x)= \begin{cases}0 & \text { if } x \text { is rational } \\ 1 & \text { if } x \text { is irrational }\end{cases}
$$

on the interval $[1,2]$. By partitioning $[1,2]$ into n sub-intervals with equal length, the Riemann sum given by the right end-point rule is always zero since the right end-point of each sub-interval is rational. On the other hand, by partitioning [1,2] into n sub-intervals using geometric sequence $1, r, r^{2}, \cdots, r^{n-1}, 2$, where $r=2^{\frac{1}{n}}$, by the fact that $r^{i} \notin \mathbb{Q}$ for each $1 \leqslant i \leqslant n-1$ the Riemann sum of f for this partition given by the right end-point rule is

$$
\begin{aligned}
\sum_{i=1}^{n} f\left(r^{i}\right)\left(r^{i}-r^{i-1}\right) & =\sum_{i=1}^{n-1}\left(r^{i}-r^{i-1}\right)=r^{1}-r^{0}+r^{2}-r^{1}+\cdots+r^{n-1}-r^{n-2} \\
& =r^{n-1}-r^{0}=\frac{2}{r}-1
\end{aligned}
$$

which approaches 1 as r approaches 1 . Therefore, f is not integrable on $[1,2]$ since there are two possible limits of Riemann sums which means that the Riemann sums cannot concentrate around any firxed real number.

Theorem 4.10

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f is Riemann integrable on $[a, b]$.

Example 4.11. In this example we compute $\int_{a}^{b} x^{q} d x$ when $q \neq-1$ is a rational number and $0<a<b$. Since $f(x)=x^{q}$ is continuous on $[a, b]$, by Theorem 4.10 to find the integral it suffices to find the limit of the Riemann sum given by the left end-point rule as $\|\mathcal{P}\|$ approaches 0 .

We follow the idea in Example 4.5. Let $r=\left(\frac{b}{a}\right)^{\frac{1}{n}}$ and $x_{i}=a r^{i}$, as well as the partition $\mathcal{P}=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$. Then the Riemann sum of f for the partition \mathcal{P} given by left end-point rule is

$$
\begin{aligned}
L(\mathcal{P}) & =\sum_{i=1}^{n}\left(a r^{i-1}\right)^{q}\left(a r^{i}-a r^{i-1}\right)=a^{q+1}(r-1) \sum_{i=1}^{n} r^{(i-1)(q+1)}=a^{q+1}(r-1) \frac{r^{n(q+1)}-1}{r^{q+1}-1} \\
& =\frac{r-1}{r^{q+1}-1}\left(b^{q+1}-a^{q+1}\right)
\end{aligned}
$$

Since $\left.\frac{d}{d r}\right|_{r=1} r^{q+1}=(q+1)$, we have

$$
\lim _{r \rightarrow 1} \frac{r^{q+1}-1}{r-1}=\left.\frac{d}{d r}\right|_{r=1} r^{q+1}=q+1 ;
$$

thus by the fact that $r \rightarrow 1$ as $n \rightarrow \infty$ (or $\|\mathcal{P}\| \rightarrow 0$), we find that

$$
\lim _{\|\mathcal{P}\| \rightarrow 0} L(\mathcal{P})=\lim _{\|\mathcal{P}\| \rightarrow 0} L(\mathcal{P})=\frac{b^{q+1}-a^{q+1}}{q+1}
$$

Therefore, $\int_{a}^{b} x^{q} d x=\frac{b^{q+1}-a^{q+1}}{q+1}$ if $q \neq 1$ is a rational number and $0<a<b$.
Example 4.12. Since the sine function is continuous on any closed interval $[a, b]$, to find $\int_{a}^{b} \sin x d x$ we can partition $[a, b]$ into sub-intervals with equal length, use the right endpoint rule to find an approximated value of the integral, and finally find the integral by passing the number of sub-intervals to the limit.

Let $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$. The right end-point rule gives the approximation

$$
\sum_{i=1}^{n} \sin x_{i} \Delta x=\sum_{i=1}^{n} \sin (a+i \Delta x) \Delta x=\Delta x \sum_{i=1}^{n} \sin (a+i \Delta x)
$$

of the integral.
Using the sum and difference formula, we find that

$$
\cos \left[a+\left(i-\frac{1}{2}\right) \Delta x\right]-\cos \left[a+\left(i+\frac{1}{2}\right) \Delta x\right]=2 \sin (a+i \Delta x) \sin \frac{\Delta x}{2}
$$

thus if $\sin \frac{\Delta x}{2} \neq 0$,

$$
\begin{aligned}
\sum_{i=1}^{n} \sin (a+i \Delta x)=\frac{1}{2 \sin \frac{\Delta x}{2}} & {\left[\left(\cos \left(a+\frac{1}{2} \Delta x\right)-\cos \left(a+\frac{3}{2} \Delta x\right)\right)+\left(\cos \left(a+\frac{3}{2} \Delta x\right)\right.\right.} \\
& \left.-\cos \left(a+\frac{5}{2} \Delta x\right)\right)+\cdots+\cos \left[a+\left(n-\frac{1}{2}\right) \Delta x\right] \\
& \left.-\cos \left[a+\left(n+\frac{1}{2}\right) \Delta x\right]\right]
\end{aligned}
$$

which, by the fact that $a+\left(n+\frac{1}{2} \Delta x\right)=b+\frac{1}{2} \Delta x$, implies that

$$
\sum_{i=1}^{n} \sin x_{i} \Delta x=\frac{\frac{\Delta x}{2}}{\sin \frac{\Delta x}{2}}\left[\cos \left(a+\frac{1}{2} \Delta x\right)-\cos \left(b+\frac{1}{2} \Delta x\right)\right]
$$

By the fact that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ and the continuity of the cosine function, we conclude that

$$
\int_{a}^{b} \sin x d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sin x_{i} \Delta x=\cos a-\cos b
$$

Theorem 4.13

Let $f:[a, b] \rightarrow \mathbb{R}$ be a non-negative and continuous function. The area of the region enclosed by the graph of f, the x-axis, and the vertical lines $x=a$ and $x=b$ is $\int_{a}^{b} f(x) d x$.

Example 4.14. In this example we use the integral notation to denote the areas of some common geometric figures (without really doing computations):

1. $\int_{-2}^{2} \sqrt{4-x^{2}} d x=2 \pi$;
2. $\int_{-1}^{1} \sqrt{4-x^{2}} d x=\frac{2 \pi}{3}+\sqrt{3} ;$
3. $\int_{-1}^{\sqrt{3}} \sqrt{4-x^{2}} d x=\pi+\sqrt{3}$.

4.2.1 Properties of Definite Integrals

Definition 4.15

1. If f is defined at $x=a$, then $\int_{a}^{a} f(x) d x=0$.
2. If f is integrable on $[a, b]$, then $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x=-\int_{[a, b]} f(x) d x$.

Remark 4.16. By the definition above, if f is Riemann integrable on $[a, b], \int_{b}^{a} f(x) d x$ is the limit of the sum

$$
\sum_{i=1}^{n} f\left(x_{i}\right)\left(x_{i}-x_{i-}\right) \quad \text { and } \quad \sum_{i=1}^{n} f\left(x_{i-1}\right)\left(x_{i}-x_{i-1}\right)
$$

as $\max \left\{\left|x_{i}-x_{i-1}\right| \mid 1 \leqslant i \leqslant n\right\} \rightarrow 0$, where $x_{0}=b>x_{1}>x_{2}>\cdots>x_{n}=a$.

Theorem 4.17

If f is Riemann integrable on the three closed intervals determined by a, b and c, then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Theorem 4.18

Let $f, g:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable on $[a, b]$ and k be a constant. Then the function $k f \pm g$ are Riemann integrable on $[a, b]$, and

$$
\int_{a}^{b}(k f \pm g)(x) d x=k \int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x
$$

Theorem 4.19

If f is non-negative and Riemann integrable on $[a, b]$, then $\int_{a}^{b} f(x) d x \geqslant 0$.

Corollary 4.20

If f, g are Riemann integrable on $[a, b]$ and $f(x) \leqslant g(x)$ for all $a \leqslant x \leqslant b$, then

$$
\int_{a}^{b} f(x) d x \leqslant \int_{a}^{b} g(x) d x
$$

Theorem 4.21

If f is Riemann integrable on $[a, b]$, then $|f|$ is Riemann integrable on $[a, b]$ and

$$
\left|\int_{a}^{b} f(x) d x\right| \leqslant \int_{a}^{b}|f(x)| d x
$$

