微積分 MA1001-A 上課筆記(精簡版) 2018.11.08.

Ching-hsiao Arthur Cheng 鄭經斅

Definition 4.6: Partition of Intervals and Riemann Sums

A finite set $\mathcal{P} = \{x_0, x_1, \dots, x_n\}$ is said to be a partition of the closed interval [a, b] if $a = x_0 < x_1 < \dots < x_n = b$. Such a partition \mathcal{P} is usually denoted by $\{a = x_0 < x_1 < \dots < x_n\}$. The norm of \mathcal{P} , denoted by $\|\mathcal{P}\|$, is the number max $\{x_i - x_{i-1} \mid 1 \leq i \leq n\}$; that is,

$$\|\mathcal{P}\| \equiv \max\left\{x_i - x_{i-1} \,\middle|\, 1 \leqslant i \leqslant n\right\}$$

A partition $\mathcal{P} = \{a = x_0 < x_1 < \cdots < x_n = b\}$ is called regular if $x_i - x_{i-1} = ||\mathcal{P}||$ for all $1 \leq i \leq n$.

Let $f : [a, b] \to \mathbb{R}$ be a function. A Riemann sum of f for the partition $\mathcal{P} = \{a = x_0 < x_1 < \cdots < x_n = b\}$ of [a, b] is a sum which takes the form

$$\sum_{i=1}^{n} f(c_i)(x_i - x_{i-1}) \,,$$

where the set $\Xi = \{c_0, c_1, \cdots, c_{n-1}\}$ satisfies that $x_{i-1} \leq c_i \leq x_i$ for each $1 \leq i \leq n$.

Definition 4.7: Riemann Integrals - 黎曼積分

Let $f : [a, b] \to \mathbb{R}$ be a function. f is said to be Riemann integrable on [a, b] if there exists a real number A such that for every $\varepsilon > 0$, there exists $\delta > 0$ such that if \mathcal{P} is partition of [a, b] satisfying $\|\mathcal{P}\| < \delta$, then any Riemann sums for the partition \mathcal{P} belongs to the interval $(A - \varepsilon, A + \varepsilon)$. Such a number A (is unique and) is called the Riemann integral of f on [a, b] and is denoted by $\int_{[a, b]} f(x) dx$.

Remark 4.8. For conventional reason, the Riemann integral of f over the interval with left end-point a and right-end point b is written as $\int_{a}^{b} f(x) dx$, and is called the definite integral of f from a to b. The function f sometimes is called the integrand of the integral.

We also note that here in the representation of the integral, x is a dummy variable; that is, we can use any symbol to denote the independent variable; thus

$$\int_a^b f(x) \, dx = \int_a^b f(t) \, dt = \int_a^b f(u) \, du$$

and etc.

The following example shows that no all functions are Riemann integrable.

Example 4.9. Consider the Dirichlet function

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational,} \\ 1 & \text{if } x \text{ is irrational,} \end{cases}$$

on the interval [1,2]. By partitioning [1,2] into n sub-intervals with equal length, the Riemann sum given by the right end-point rule is always zero since the right end-point of each sub-interval is rational. On the other hand, by partitioning [1,2] into n sub-intervals using geometric sequence $1, r, r^2, \dots, r^{n-1}, 2$, where $r = 2^{\frac{1}{n}}$, by the fact that $r^i \notin \mathbb{Q}$ for each $1 \leq i \leq n-1$ the Riemann sum of f for this partition given by the right end-point rule is

$$\sum_{i=1}^{n} f(r^{i})(r^{i} - r^{i-1}) = \sum_{i=1}^{n-1} (r^{i} - r^{i-1}) = r^{1} - r^{0} + r^{2} - r^{1} + \dots + r^{n-1} - r^{n-2}$$
$$= r^{n-1} - r^{0} = \frac{2}{r} - 1$$

which approaches 1 as r approaches 1. Therefore, f is not integrable on [1, 2] since there are two possible limits of Riemann sums which means that the Riemann sums cannot concentrate around any firzed real number.

Theorem 4.10

If $f:[a,b] \to \mathbb{R}$ is continuous, then f is Riemann integrable on [a,b].

Example 4.11. In this example we compute $\int_{a}^{b} x^{q} dx$ when $q \neq -1$ is a rational number and 0 < a < b. Since $f(x) = x^{q}$ is continuous on [a, b], by Theorem 4.10 to find the integral it suffices to find the limit of the Riemann sum given by the left end-point rule as $\|\mathcal{P}\|$ approaches 0.

We follow the idea in Example 4.5. Let $r = \left(\frac{b}{a}\right)^{\frac{1}{n}}$ and $x_i = ar^i$, as well as the partition $\mathcal{P} = \{a = x_0 < x_1 < \cdots < x_n = b\}$. Then the Riemann sum of f for the partition \mathcal{P} given by left end-point rule is

$$\begin{split} L(\mathcal{P}) &= \sum_{i=1}^{n} (ar^{i-1})^q (ar^i - ar^{i-1}) = a^{q+1} (r-1) \sum_{i=1}^{n} r^{(i-1)(q+1)} = a^{q+1} (r-1) \frac{r^{n(q+1)} - 1}{r^{q+1} - 1} \\ &= \frac{r-1}{r^{q+1} - 1} \left(b^{q+1} - a^{q+1} \right). \end{split}$$

Since $\frac{d}{dr}\Big|_{r=1}r^{q+1} = (q+1)$, we have

$$\lim_{r \to 1} \frac{r^{q+1} - 1}{r - 1} = \frac{d}{dr} \Big|_{r=1} r^{q+1} = q + 1;$$

thus by the fact that $r \to 1$ as $n \to \infty$ (or $||\mathcal{P}|| \to 0$), we find that

$$\lim_{\|\mathcal{P}\| \to 0} L(\mathcal{P}) = \lim_{\|\mathcal{P}\| \to 0} L(\mathcal{P}) = \frac{b^{q+1} - a^{q+1}}{q+1}.$$

Therefore, $\int_{a}^{b} x^{q} dx = \frac{b^{q+1} - a^{q+1}}{q+1}$ if $q \neq 1$ is a rational number and 0 < a < b.

Example 4.12. Since the sine function is continuous on any closed interval [a, b], to find $\int_{a}^{b} \sin x \, dx$ we can partition [a, b] into sub-intervals with equal length, use the right endpoint rule to find an approximated value of the integral, and finally find the integral by passing the number of sub-intervals to the limit.

Let $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$. The right end-point rule gives the approximation $\sum_{i=1}^{n} \sin x_i \Delta x = \sum_{i=1}^{n} \sin(a + i\Delta x) \Delta x = \Delta x \sum_{i=1}^{n} \sin(a + i\Delta x)$

of the integral.

Using the sum and difference formula, we find that

$$\cos\left[a + \left(i - \frac{1}{2}\right)\Delta x\right] - \cos\left[a + \left(i + \frac{1}{2}\right)\Delta x\right] = 2\sin(a + i\Delta x)\sin\frac{\Delta x}{2};$$

thus if $\sin \frac{\Delta x}{2} \neq 0$,

$$\sum_{i=1}^{n} \sin(a+i\Delta x) = \frac{1}{2\sin\frac{\Delta x}{2}} \left[\left(\cos\left(a+\frac{1}{2}\Delta x\right) - \cos\left(a+\frac{3}{2}\Delta x\right) \right) + \left(\cos\left(a+\frac{3}{2}\Delta x\right) \right) - \cos\left(a+\frac{5}{2}\Delta x\right) \right) + \dots + \cos\left[a+(n-\frac{1}{2})\Delta x\right] - \cos\left[a+(n+\frac{1}{2})\Delta x\right] \right]$$

which, by the fact that $a + \left(n + \frac{1}{2}\Delta x\right) = b + \frac{1}{2}\Delta x$, implies that

$$\sum_{i=1}^{n} \sin x_i \Delta x = \frac{\frac{\Delta x}{2}}{\sin \frac{\Delta x}{2}} \left[\cos \left(a + \frac{1}{2} \Delta x \right) - \cos \left(b + \frac{1}{2} \Delta x \right) \right].$$

By the fact that $\lim_{x\to 0} \frac{\sin x}{x} = 1$ and the continuity of the cosine function, we conclude that

$$\int_{a}^{b} \sin x \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} \sin x_i \Delta x = \cos a - \cos b \, .$$

Theorem 4.13

Let $f : [a, b] \to \mathbb{R}$ be a non-negative and continuous function. The area of the region enclosed by the graph of f, the x-axis, and the vertical lines x = a and x = b is $\int_{a}^{b} f(x) dx$.

Example 4.14. In this example we use the integral notation to denote the areas of some common geometric figures (without really doing computations):

1.
$$\int_{-2}^{2} \sqrt{4 - x^2} \, dx = 2\pi;$$
 2. $\int_{-1}^{1} \sqrt{4 - x^2} \, dx = \frac{2\pi}{3} + \sqrt{3};$ 3. $\int_{-1}^{\sqrt{3}} \sqrt{4 - x^2} \, dx = \pi + \sqrt{3}.$

4.2.1 **Properties of Definite Integrals**

Definition 4.15

1. If f is defined at
$$x = a$$
, then $\int_{a}^{a} f(x) dx = 0$.
2. If f is integrable on $[a, b]$, then $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx = -\int_{[a, b]}^{b} f(x) dx$.

Remark 4.16. By the definition above, if f is Riemann integrable on [a, b], $\int_{b}^{a} f(x) dx$ is the limit of the sum

$$\sum_{i=1}^{n} f(x_i)(x_i - x_{i-1}) \quad and \quad \sum_{i=1}^{n} f(x_{i-1})(x_i - x_{i-1})$$

as max $\{|x_i - x_{i-1}| | 1 \le i \le n\} \to 0$, where $x_0 = b > x_1 > x_2 > \cdots > x_n = a$.

Theorem 4.17

If f is Riemann integrable on the three closed intervals determined by a, b and c, then

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx \, .$$

Theorem 4.18

Let $f, g: [a, b] \to \mathbb{R}$ be Riemann integrable on [a, b] and k be a constant. Then the function $kf \pm g$ are Riemann integrable on [a, b], and

$$\int_{a}^{b} (kf \pm g)(x) \, dx = k \int_{a}^{b} f(x) \, dx \pm \int_{a}^{b} g(x) \, dx$$

Theorem 4.19

If f is non-negative and Riemann integrable on [a, b], then $\int_a^b f(x) dx \ge 0$.

Corollary 4.20

If f, g are Riemann integrable on [a, b] and $f(x) \leq g(x)$ for all $a \leq x \leq b$, then

$$\int_{a}^{b} f(x) \, dx \leqslant \int_{a}^{b} g(x) \, dx \, .$$

Theorem 4.21

If f is Riemann integrable on [a, b], then |f| is Riemann integrable on [a, b] and

$$\left|\int_{a}^{b} f(x) \, dx\right| \leq \int_{a}^{b} \left|f(x)\right| \, dx \, .$$