微積分 MA1001－A 上課筆記（精簡版） 2018．10．30．

Ching－hsiao Arthur Cheng 鄭經敘

3.7 Newton's Method

The Newton method is a numerical method for finding zeros of differentiable functions. Let $f:(a, b) \rightarrow \mathbb{R}$ be a differentiable function, and $c \in(a, b)$ is a zero of f. To find an approximated value of c, the Newton method is the following iterative scheme:

1. Make an initial estimate $x_{1} \in(a, b)$ that is close to c.
2. Determine a new approximation using the iterative relation:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} .
$$

3. When $\left|x_{n}-x_{n+1}\right|$ is within the desired accuracy, let x_{n+1} serve as the final approximation.

Example 3.32. To find the square root of a positive number A is equivalent to finding zeros of the function $f(x)=x^{2}-A$ in $(0, \infty)$. The Newton method provides the iterative scheme

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{2}-A}{2 x_{n}}=\frac{x_{n}}{2}+\frac{A}{2 x_{n}}
$$

to find approximated value of \sqrt{A}.
It can be shown that when $\left|\frac{f(x) f^{\prime \prime}(x)}{f^{\prime}(x)^{2}}\right|<1$ for all $x \in(a, b)$, then the Newton method produces a convergent sequence which approaches a zero in (a, b).

Chapter 4. Integration

- The Σ notation: The sum of n-terms $a_{1}, a_{2}, \cdots, a_{n}$ is written as $\sum_{i=1}^{n} a_{i}$. In other words,

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n}
$$

Here i is called the index of summation, a_{i} is the i-th terms of the sum.

- Basic properties of sums: $\sum_{i=1}^{n}\left(k a_{i}+b_{i}\right)=k \sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i}$.

Theorem 4.1: Summation Formula

1. $\sum_{i=1}^{n} c=c n$ if c is a constant;
2. $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$;
3. $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$;
4. $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$.

4.1 The Area under the Graph of a Non-negative Continuous Function

Let $f:[a, b] \rightarrow \mathbb{R}$ be a non-negative continuous function, and R be the region enclosed by the graph of the function f, the x-axis and straight lines $x=a$ and $x=b$. We consider computing $\mathcal{A}(\mathrm{R})$, the area of R . Generally speaking, since the graph of $y=f(x)$ is in general not a straight line, the computation of $\mathcal{A}(\mathrm{R})$ is not straight-forward. How do we compute the area $\mathcal{A}(\mathrm{R})$?

Partition $[a, b]$ into n sub-intervals with equal length, and let $\Delta x=\frac{b-a}{n}, x_{i}=a+i \Delta x$. By the Extreme Value Theorem, for each $1 \leqslant i \leqslant n f$ attains its maximum and minimum on $\left[x_{i-1}, x_{i}\right]$; thus for $1 \leqslant i \leqslant n$, there exist $M_{i}, m_{i} \in\left[x_{i-1}, x_{i}\right]$ such that

$$
f\left(M_{i}\right)=\text { the maximum of } f \text { on }\left[x_{i-1}, x_{i}\right]
$$

and

$$
f\left(m_{i}\right)=\text { the minimum of } f \text { on }\left[x_{i-1}, x_{i}\right] .
$$

The sum $S(n) \equiv \sum_{i=1}^{n} f\left(M_{i}\right) \Delta x$ is called the upper sum of f for the partition $\left\{a=x_{0}<x_{1}<\right.$ $\left.x_{2}<\cdots<x_{n}=b\right\}$, and $s(n) \equiv \sum_{i=1}^{n} f\left(m_{i}\right) \Delta x$ is called the lower sum of f for the partition
$\left\{a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b\right\}$. By the definition of the upper sum and lower sum, we find that for each $n \in \mathbb{N}$,

$$
\sum_{i=1}^{n} f\left(m_{i}\right) \Delta x \leqslant \mathcal{A}(\mathrm{R}) \leqslant \sum_{i=1}^{n} f\left(M_{i}\right) \Delta x
$$

If the limits of the both sides exist and are identical as Δx approaches 0 (which is the same as n approaches infinity), by the Squeeze Theorem we can conclude that $\mathcal{A}(\mathrm{R})$ is the same as the limit.

Example 4.2. Let $f(x)=x^{2}$, and R be the region enclosed by the graph of $y=f(x)$, the x axis, and the straight lines $x=a$ and $x=b$, where we assume that $0 \leqslant a<b$. Then the lower sum is obtained by the "left end-point rule" approximation of $\mathcal{A}(\mathrm{R})$

$$
\sum_{i=1}^{n}\left(a+\frac{(i-1)(b-a)}{n}\right)^{2} \frac{b-a}{n}
$$

and the upper sum is obtained by the "right end-point rule" approximation

$$
\sum_{i=1}^{n}\left(a+\frac{i(b-a)}{n}\right)^{2} \frac{b-a}{n} .
$$

By Theorem 4.1,

$$
\begin{aligned}
\sum_{i=1}^{n}\left(a+\frac{i(b-a)}{n}\right)^{2} \frac{b-a}{n} & =\sum_{i=1}^{n}\left[a^{2}+\frac{2 a(b-a) i}{n}+\frac{a^{2}(b-a)^{2} i^{2}}{n^{2}}\right] \frac{b-a}{n} \\
& =a^{2}(b-a)+\frac{a(b-a)^{2} n(n+1)}{n^{2}}+\frac{a^{2}(b-a)^{3}}{n^{3}} \frac{n(n+1)(2 n+1)}{6} \\
& =a^{2}(b-a)+a(b-a)^{2}\left(1+\frac{1}{n}\right)+\frac{a^{2}(b-a)^{3}}{6}\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we find that

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(a+\frac{i(b-a)}{n}\right)^{2} \frac{b-a}{n}=a^{2}(b-a)+a(b-a)^{2}+\frac{a^{2}(b-a)^{3}}{3}=\frac{b^{3}-a^{3}}{3} .
$$

Similarly,

$$
\begin{aligned}
\sum_{i=1}^{n} & \left(a+\frac{(i-1)(b-a)}{n}\right)^{2} \frac{b-a}{n}=\frac{a^{2}(b-a)}{n}+\sum_{i=1}^{n}\left(a+\frac{i(b-a)}{n}\right)^{2} \frac{b-a}{n}-\frac{b^{2}(b-a)}{n} \\
& =a^{2}(b-a)+\frac{a(b-a)^{2} n(n+1)}{n^{2}}+\frac{a^{2}(b-a)^{3}}{n^{3}} \frac{n(n+1)(2 n+1)}{6}+\frac{\left(a^{2}-b^{2}\right)(b-a)}{n}
\end{aligned}
$$

thus

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(a+\frac{(i-1)(b-a)}{n}\right)^{2} \frac{b-a}{n}=\frac{b^{3}-a^{3}}{3} .
$$

Therefore, $\mathcal{A}(\mathrm{R})=\frac{b^{3}-a^{3}}{3}$.
Remark 4.3. Let R_{1} be the region enclosed by $f(x)=x^{2}$, the x-axis and $x=a$, the R_{2} be the region enclosed by $f(x)=x^{2}$, the x-axis and $x=b$, then intuitively $\mathcal{A}(\mathrm{R})=$ $\mathcal{A}\left(\mathrm{R}_{2}\right)-\mathcal{A}\left(\mathrm{R}_{1}\right)$ and this is true since $\mathcal{A}\left(\mathrm{R}_{1}\right)=\frac{a^{3}}{3}$ and $\mathcal{A}\left(\mathrm{R}_{2}\right)=\frac{b^{3}}{3}$.

If f is not continuous, then f might not attain its extrema on the interval $\left[x_{i-1}, x_{i}\right]$. In this case, it might be impossible to form the upper sum or the lower sum for a given partition. On the other hand, the left end-point rule $\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x$ and the right end-point rule $\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$ of approximating the area are always possible. We can even consider the "mid-point rule" approximation given by

$$
\sum_{i=1}^{n} f\left(\frac{x_{i-1}+x_{i}}{2}\right) \Delta x
$$

and consider the limit of the expression above as n approaches infinity.

4.2 Riemann Sums and Definite Integrals

In general, in order to find an approximation of $\mathcal{A}(\mathrm{R})$, the interval $[a, b]$ does not have to be divided into sub-intervals with equal length. Assume that $[a, b]$ are divided into n subintervals and the end-points of those sub-intervals are ordered as $a=x_{0}<x_{1}<x_{2}<\cdots<$ $x_{n}=b$, here the collection of end-points $\mathcal{P}=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ is called a partition of $[a, b]$. Then the "left end-point rule" approximation for the partition \mathcal{P} is given by

$$
\ell(\mathcal{P})=\sum_{i=1}^{n} f\left(x_{i-1}\right)\left(x_{i}-x_{i-1}\right)
$$

and the "right end-point rule" approximation for the partition \mathcal{P} is given by

$$
r(\mathcal{P})=\sum_{i=1}^{n} f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)
$$

