微積分 MA1001-A 上課筆記(精簡版) 2018.10.30.

Ching-hsiao Arthur Cheng 鄭經斅

3.7 Newton's Method

The Newton method is a numerical method for finding zeros of differentiable functions. Let $f : (a, b) \to \mathbb{R}$ be a differentiable function, and $c \in (a, b)$ is a zero of f. To find an approximated value of c, the Newton method is the following iterative scheme:

- 1. Make an initial estimate $x_1 \in (a, b)$ that is close to c.
- 2. Determine a new approximation using the iterative relation:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

3. When $|x_n - x_{n+1}|$ is within the desired accuracy, let x_{n+1} serve as the final approximation.

Example 3.32. To find the square root of a positive number A is equivalent to finding zeros of the function $f(x) = x^2 - A$ in $(0, \infty)$. The Newton method provides the iterative scheme

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 - A}{2x_n} = \frac{x_n}{2} + \frac{A}{2x_n}$$

to find approximated value of \sqrt{A} .

It can be shown that when $\left|\frac{f(x)f''(x)}{f'(x)^2}\right| < 1$ for all $x \in (a, b)$, then the Newton method produces a convergent sequence which approaches a zero in (a, b).

Chapter 4. Integration

• The Σ notation: The sum of *n*-terms a_1, a_2, \dots, a_n is written as $\sum_{i=1}^n a_i$. In other words,

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n$$

Here i is called the index of summation, a_i is the *i*-th terms of the sum.

• Basic properties of sums: $\sum_{i=1}^{n} (ka_i + b_i) = k \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i.$

Theorem 4.1: Summation Formula

1. $\sum_{i=1}^{n} c = cn$ if c is a constant;	2. $\sum_{i=1}^{n} i = \frac{n(n+1)}{2};$
3. $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6};$	4. $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$

4.1 The Area under the Graph of a Non-negative Continuous Function

Let $f : [a, b] \to \mathbb{R}$ be a non-negative continuous function, and R be the region enclosed by the graph of the function f, the x-axis and straight lines x = a and x = b. We consider computing $\mathcal{A}(R)$, the area of R. Generally speaking, since the graph of y = f(x) is in general not a straight line, the computation of $\mathcal{A}(R)$ is not straight-forward. How do we compute the area $\mathcal{A}(R)$?

Partition [a, b] into n sub-intervals with equal length, and let $\Delta x = \frac{b-a}{n}$, $x_i = a + i\Delta x$. By the Extreme Value Theorem, for each $1 \leq i \leq n$ f attains its maximum and minimum on $[x_{i-1}, x_i]$; thus for $1 \leq i \leq n$, there exist $M_i, m_i \in [x_{i-1}, x_i]$ such that

$$f(M_i)$$
 = the maximum of f on $[x_{i-1}, x_i]$

and

 $f(m_i)$ = the minimum of f on $[x_{i-1}, x_i]$.

The sum $S(n) \equiv \sum_{i=1}^{n} f(M_i) \Delta x$ is called the upper sum of f for the partition $\{a = x_0 < x_1 < x_2 < \dots < x_n = b\}$, and $s(n) \equiv \sum_{i=1}^{n} f(m_i) \Delta x$ is called the lower sum of f for the partition

 $\{a = x_0 < x_1 < x_2 < \cdots < x_n = b\}$. By the definition of the upper sum and lower sum, we find that for each $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} f(m_i) \Delta x \leqslant \mathcal{A}(\mathbf{R}) \leqslant \sum_{i=1}^{n} f(M_i) \Delta x \, .$$

If the limits of the both sides exist and are identical as Δx approaches 0 (which is the same as *n* approaches infinity), by the Squeeze Theorem we can conclude that $\mathcal{A}(\mathbf{R})$ is the same as the limit.

Example 4.2. Let $f(x) = x^2$, and R be the region enclosed by the graph of y = f(x), the x axis, and the straight lines x = a and x = b, where we assume that $0 \le a < b$. Then the lower sum is obtained by the "left end-point rule" approximation of $\mathcal{A}(R)$

$$\sum_{i=1}^{n} \left(a + \frac{(i-1)(b-a)}{n} \right)^2 \frac{b-a}{n}$$

and the upper sum is obtained by the "right end-point rule" approximation

$$\sum_{i=1}^n \left(a + \frac{i(b-a)}{n}\right)^2 \frac{b-a}{n}.$$

By Theorem 4.1,

$$\begin{split} \sum_{i=1}^{n} \left(a + \frac{i(b-a)}{n}\right)^2 \frac{b-a}{n} &= \sum_{i=1}^{n} \left[a^2 + \frac{2a(b-a)i}{n} + \frac{a^2(b-a)^2i^2}{n^2}\right] \frac{b-a}{n} \\ &= a^2(b-a) + \frac{a(b-a)^2n(n+1)}{n^2} + \frac{a^2(b-a)^3}{n^3} \frac{n(n+1)(2n+1)}{6} \\ &= a^2(b-a) + a(b-a)^2 \left(1 + \frac{1}{n}\right) + \frac{a^2(b-a)^3}{6} \left(1 + \frac{1}{n}\right) \left(2 + \frac{1}{n}\right). \end{split}$$

Letting $n \to \infty$, we find that

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(a + \frac{i(b-a)}{n} \right)^2 \frac{b-a}{n} = a^2(b-a) + a(b-a)^2 + \frac{a^2(b-a)^3}{3} = \frac{b^3 - a^3}{3}.$$

Similarly,

$$\sum_{i=1}^{n} \left(a + \frac{(i-1)(b-a)}{n}\right)^2 \frac{b-a}{n} = \frac{a^2(b-a)}{n} + \sum_{i=1}^{n} \left(a + \frac{i(b-a)}{n}\right)^2 \frac{b-a}{n} - \frac{b^2(b-a)}{n}$$
$$= a^2(b-a) + \frac{a(b-a)^2n(n+1)}{n^2} + \frac{a^2(b-a)^3}{n^3} \frac{n(n+1)(2n+1)}{6} + \frac{(a^2-b^2)(b-a)}{n};$$

thus

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(a + \frac{(i-1)(b-a)}{n} \right)^2 \frac{b-a}{n} = \frac{b^3 - a^3}{3}$$

Therefore, $\mathcal{A}(\mathbf{R}) = \frac{b^3 - a^3}{3}$.

Remark 4.3. Let R_1 be the region enclosed by $f(x) = x^2$, the *x*-axis and x = a, the R_2 be the region enclosed by $f(x) = x^2$, the *x*-axis and x = b, then intuitively $\mathcal{A}(R) = \mathcal{A}(R_2) - \mathcal{A}(R_1)$ and this is true since $\mathcal{A}(R_1) = \frac{a^3}{3}$ and $\mathcal{A}(R_2) = \frac{b^3}{3}$.

If f is not continuous, then f might not attain its extrema on the interval $[x_{i-1}, x_i]$. In this case, it might be impossible to form the upper sum or the lower sum for a given partition. On the other hand, the left end-point rule $\sum_{i=1}^{n} f(x_{i-1})\Delta x$ and the right end-point rule $\sum_{i=1}^{n} f(x_i)\Delta x$ of approximating the area are always possible. We can even consider the "mid-point rule" approximation given by

$$\sum_{i=1}^{n} f\left(\frac{x_{i-1}+x_i}{2}\right) \Delta x$$

and consider the limit of the expression above as n approaches infinity.

4.2 Riemann Sums and Definite Integrals

In general, in order to find an approximation of $\mathcal{A}(\mathbf{R})$, the interval [a, b] does not have to be divided into sub-intervals with equal length. Assume that [a, b] are divided into n subintervals and the end-points of those sub-intervals are ordered as $a = x_0 < x_1 < x_2 < \cdots < x_n = b$, here the collection of end-points $\mathcal{P} = \{x_0, x_1, \cdots, x_n\}$ is called a **partition** of [a, b]. Then the "left end-point rule" approximation for the partition \mathcal{P} is given by

$$\ell(\mathcal{P}) = \sum_{i=1}^{n} f(x_{i-1})(x_i - x_{i-1})$$

and the "right end-point rule" approximation for the partition \mathcal{P} is given by

$$r(\mathcal{P}) = \sum_{i=1}^{n} f(x_i)(x_i - x_{i-1}).$$