微積分 MA1001－A 上課筆記（精簡版） 2018．10．11．

Ching－hsiao Arthur Cheng 鄭經敘

Definition 2.2

Let f be a function defined on an open interval I containing $c . f$ is said to be differentiable at c if the limit

$$
\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}
$$

exists．If the limit above exists，the limit is denoted by $f^{\prime}(c)$ and called the derivative of f at c ．When the derivative of f at each point of I exists，f is said to be differentiable on I and the derivative of f is a function denoted by f^{\prime} ．

Theorem 2．9：可微必連續

Let f be a function defined on an open interval I ，and $c \in I$ ．If f is differentiable at c ，then f is continuous at c ．

Theorem 2.11

We have the following differentiation rules：
1．If n is an integer，then $\frac{d}{d x} x^{n}=n x^{n-1}$（whenever x^{n-1} makes sense or $x^{n} \in \mathbb{R}$ ）．
2．$\frac{d}{d x} \sin x=\cos x, \frac{d}{d x} \cos x=-\sin x$ ．
3．If k is a constant and $f:(a, b) \rightarrow \mathbb{R}$ is differentiable at $c \in(a, b)$ ，then $k f$ is differentiable at c and

$$
\left.\frac{d}{d x}\right|_{x=c}[k f(x)]=k f^{\prime}(c) .
$$

4．If $f, g:(a, b) \rightarrow \mathbb{R}$ are differentiable at $c \in(a, b)$ ，then $f \pm g$ is differentiable at c and

$$
\left.\frac{d}{d x}\right|_{x=c}[f(x) \pm g(x)]=f^{\prime}(c) \pm g^{\prime}(c) .
$$

Theorem 2．13：Product Rule

Let $f, g:(a, b) \rightarrow \mathbb{R}$ be real－valued functions，and $c \in(a, b)$ ．If f and g are differen－ tiable at c ，then $f g$ is differentiable at c and

$$
\left.\frac{d}{d x}\right|_{x=c}(f g)(x)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c) .
$$

Theorem 2．15：Quotient Rule

Let $f, g:(a, b) \rightarrow \mathbb{R}$ be real－valued functions，and $c \in(a, b)$ ．If f and g are differen－ tiable at c and $g(c) \neq 0$ ，then $\frac{f}{g}$ is differentiable at c and

$$
\left.\frac{d}{d x}\right|_{x=c} \frac{f}{g}(x)=\frac{f^{\prime}(c) g(c)-f(c) g^{\prime}(c)}{g(c)^{2}} .
$$

We also used the quotient rule to show the following identities：

$$
\begin{aligned}
\frac{d}{d x} \tan x & =\sec ^{2} x, & \frac{d}{d x} \cot x & =-\csc ^{2} x \\
\frac{d}{d x} \sec x & =\sec x \tan x, & \frac{d}{d x} \csc x & =-\csc x \cot x
\end{aligned}
$$

2．3 The Chain Rule

The chain rule is used to study the derivative of composite functions．

Theorem 2．18：Chain Rule－連鎖律

Let I, J be open intervals，$f: J \rightarrow \mathbb{R}, g: I \rightarrow \mathbb{R}$ be real－valued functions，and the range of g is contained in J ．If g is differentiable at $c \in I$ and f is differentiable at $g(c)$ ，then $f \circ g$ is differentiable at c and

$$
\left.\frac{d}{d x}\right|_{x=c}(f \circ g)(x)=f^{\prime}(g(c)) g^{\prime}(c) .
$$

Proof．To simplify the notation，we set $d=g(c)$ ．
Let $\varepsilon>0$ be given．Since f is differentiable at d and g is differentiable at c ，there exist $\delta_{1}, \delta_{2}>0$ such that

$$
\begin{aligned}
& \left|\frac{f(d+k)-f(d)}{k}-f^{\prime}(d)\right|<\frac{\varepsilon}{2\left(1+\left|g^{\prime}(c)\right|\right)} \text { if } 0<|k|<\delta_{1} \\
& \left|\frac{g(c+h)-g(c)}{h}-g^{\prime}(c)\right|<\min \left\{1, \frac{\varepsilon}{2\left(1+\left|f^{\prime}(d)\right|\right)}\right\} \text { if } 0<|h|<\delta_{2}
\end{aligned}
$$

Therefore，

$$
\begin{aligned}
\left|f(d+k)-f(d)-f^{\prime}(d) k\right| & \leqslant \frac{\varepsilon}{2\left(1+\left|g^{\prime}(c)\right|\right)}|k| \text { if }|k|<\delta_{1} \\
\left|g(c+h)-g(c)-g^{\prime}(c) h\right| & \leqslant \min \left\{1, \frac{\varepsilon}{2\left(1+\left|f^{\prime}(d)\right|\right)}\right\}|h| \text { if }|h|<\delta_{2}
\end{aligned}
$$

By Theorem 2.9, g is continuous at c; thus $\lim _{h \rightarrow 0} g(c+h)=g(c)$. This fact provides $\delta_{3}>0$ such that

$$
|g(c+h)-g(c)|<\delta_{1} \quad \text { if }|h|<\delta_{3}
$$

Define $\delta=\min \left\{\delta_{2}, \delta_{3}\right\}$. Then $\delta>0$. Moreover, if $|h|<\delta$, the number $k \equiv g(c+h)-g(c)$ satisfies $|k|<\delta_{1}$. As a consequence, if $|h|<\delta$,

$$
\begin{aligned}
&\left|(f \circ g)(c+h)-(f \circ g)(c)-f^{\prime}(d) g^{\prime}(c) h\right|=\left|f(g(c+h))-f(d)-f^{\prime}(d) g^{\prime}(c) h\right| \\
&=\left|f(d+k)-f(d)-f^{\prime}(d) g^{\prime}(c) h\right| \\
&=\left|f(d+k)-f(d)-f^{\prime}(d) k+f^{\prime}(d) k-f^{\prime}(d) g^{\prime}(c) h\right| \\
& \leqslant\left|f(d+k)-f(d)-f^{\prime}(d) k\right|+\left|f^{\prime}(d)\right|\left|k-g^{\prime}(c) h\right| \\
& \leqslant \frac{\varepsilon}{2\left(1+\left|g^{\prime}(c)\right|\right)}|k|+\left|f^{\prime}(d)\right|\left|g(c+h)-g(c)-g^{\prime}(c) h\right| \\
& \leqslant \frac{\varepsilon}{2\left(1+\left|g^{\prime}(c)\right|\right)}\left(\left|k-g^{\prime}(c) h\right|+\left|g^{\prime}(c)\right||h|\right)+\left|f^{\prime}(d)\right| \frac{\varepsilon}{2\left(1+\left|f^{\prime}(d)\right|\right)} \\
& \leqslant \frac{\varepsilon}{2\left(1+\left|g^{\prime}(c)\right|\right)}\left(|h|+\left|g^{\prime}(c)\right||h|\right)+\left|f^{\prime}(d)\right| \frac{\varepsilon|h|}{2\left(1+\left|f^{\prime}(d)\right|\right)} \\
&=\frac{\varepsilon}{2}|h|+\frac{\left|f^{\prime}(d)\right|}{2\left(1+\left|f^{\prime}(d)\right|\right)} \varepsilon|h| .
\end{aligned}
$$

The inequality above implies that if $0<|h|<\delta$,

$$
\left|\frac{(f \circ g)(c+h)-(f \circ g)(c)}{h}-f^{\prime}(d) g^{\prime}(c)\right| \leqslant \frac{\varepsilon}{2}+\frac{\left|f^{\prime}(d)\right|}{2\left(1+\left|f^{\prime}(d)\right|\right)} \varepsilon<\varepsilon
$$

which concludes the chain rule.
How to memorize the chain rule? Let $y=g(x)$ and $u=f(y)$. Then the derivative $u=(f \circ g)(x)$ is $\frac{d u}{d x}=\frac{d u}{d y} \frac{d y}{d x}$.

Example 2.19. Let $f(x)=\left(3 x-2 x^{2}\right)^{3}$. Then $f^{\prime}(x)=3\left(3 x-2 x^{2}\right)^{2}(3-4 x)$.
Example 2.20. Let $f(x)=\left(\frac{3 x-1}{x^{2}+3}\right)^{2}$. Then

$$
\begin{aligned}
f^{\prime}(x) & =2\left(\frac{3 x-1}{x^{2}+3}\right)^{2-1} \frac{d}{d x} \frac{3 x-1}{x^{2}+3}=\frac{2(3 x-1)}{x^{2}+3} \cdot \frac{3\left(x^{2}+3\right)-2 x(3 x-1)}{\left(x^{2}+3\right)^{2}} \\
& =\frac{2(3 x-1)\left(-3 x^{2}+2 x+9\right)}{\left(x^{2}+3\right)^{3}} .
\end{aligned}
$$

Example 2.21. Let $f(x)=\tan ^{3}\left[\left(x^{2}-1\right)^{2}\right]$. Then

$$
\begin{aligned}
f^{\prime}(x) & =\left\{3 \tan ^{2}\left[\left(x^{2}-1\right)^{2}\right] \sec ^{2}\left[\left(x^{2}-1\right)^{2}\right]\right\} \times\left[2\left(x^{2}-1\right) \cdot(2 x)\right] \\
& =12 x\left(x^{2}-1\right) \tan ^{2}\left[\left(x^{2}-1\right)^{2}\right] \sec ^{2}\left[\left(x^{2}-1\right)^{2}\right]
\end{aligned}
$$

Example 2.22. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{array}{cl}
x^{2} \sin \frac{1}{x} & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}\right.
$$

Then if $x \neq 0$, by the chain rule we have

$$
\begin{aligned}
f^{\prime}(x) & =\left(\frac{d}{d x} x^{2}\right) \sin \frac{1}{x}+x^{2}\left(\frac{d}{d x} \sin \frac{1}{x}\right)=2 x \sin \frac{1}{x}+x^{2} \cos \frac{1}{x}\left(\frac{d}{d x} \frac{1}{x}\right) \\
& =2 x \sin \frac{1}{x}+x^{2} \cos \frac{1}{x}\left(-\frac{1}{x^{2}}\right)=2 x \sin \frac{1}{x}-\cos \frac{1}{x} .
\end{aligned}
$$

Next we compute $f^{\prime}(0)$. If $\Delta x \neq 0$, we have

$$
\left|\frac{f(\Delta x)-f(0)}{\Delta x}\right|=\left|\Delta x \sin \frac{1}{\Delta x}\right| \leqslant|\Delta x| ;
$$

thus $-|\Delta x| \leqslant \frac{f(\Delta x)-f(0)}{\Delta x} \leqslant|\Delta x|$ for all $\Delta x \neq 0$ and the Squeeze Theorem implies that

$$
f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(\Delta x)-f(0)}{\Delta x}=0
$$

Therefore, we conclude that

$$
f^{\prime}(x)=\left\{\begin{array}{cl}
2 x \sin \frac{1}{x}-\cos \frac{1}{x} & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}\right.
$$

Definition 2.23

Let f be a function defined on an open interval $I . \quad f$ is said to be continuously differentiable on I if f is differentiable on I and f^{\prime} is continuous on I.

The function f given in Example 2.22 is differentiable on \mathbb{R} but not continuously differentiable since $\lim _{x \rightarrow 0} f^{\prime}(x)$ D.N.E.

