微積分 MA1001－A 上課筆記（精簡版） 2018．10．09．

Chapter 2．Differentiation

2．1 The Derivatives of Functions

Definition 2.1

Let f be a function defined on an open interval containing c ．If the limit $\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}=m$ exists，then the line passing through $(c, f(c))$ with slope m is the tangent line to the graph of f at point $((c, f(c))$ ．

Definition 2.2

Let f be a function defined on an open interval I containing $c . f$ is said to be differentiable at c if the limit

$$
\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}
$$

exists．If the limit above exists，the limit is denoted by $f^{\prime}(c)$ and called the derivative of f at c ．When the derivative of f at each point of I exists，f is said to be differentiable on I and the derivative of f is a function denoted by f^{\prime} ．

Notation：If f is differentiable on an open interval I and $c \in I$ ，then we use the following notation：

$$
f^{\prime}(x)=\frac{d}{d x} f(x)=\frac{d f(x)}{d x}, \quad f^{\prime}(c)=\left.\frac{d}{d x}\right|_{x=c} f(x) .
$$

Remark 2．3．Letting $x=c+\Delta x$ in the definition of the derivatives，then

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

if the limit exists．
Combining Example 2．4－2．6，we conclude that

$$
\frac{d}{d x} x^{n}=\left\{\begin{array}{lll}
n x^{n-1} & \forall x \in \mathbb{R} & \text { if } n \in \mathbb{N} \cup\{0\}, \tag{2.1.1}\\
n x^{n-1} & \forall x \neq 0 & \text { if } n \in \mathbb{Z} \text { and } n<0
\end{array}\right.
$$

我們注意到當 n 是負整數時，在計算 $\left.\frac{d}{d x}\right|_{x=c} x^{n}$ 時，已經必須先假設 $c \neq 0$ 才能計算導數，並非最後算出來 $\left.\frac{d}{d x}\right|_{x=c} x^{n}=n c^{n-1}$ 時發現 c 不可為零所以不能代入。這是一個非常重要的觀念！不能搞錯順序！

Example 2．7．Let $f(x)=\sin x$ ．By the sum and difference formula，

$$
\begin{aligned}
f(x+\Delta x)-f(x) & =\sin (x+\Delta x)-\sin x=\sin x \cos \Delta x+\sin \Delta x \cos x-\sin x \\
& =\sin x(\cos \Delta x-1)+\sin \Delta x \cos x
\end{aligned}
$$

thus by the fact that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ and $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$ ，we find that

$$
\begin{equation*}
\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0}\left[\sin x \frac{\cos \Delta x-1}{\Delta x}+\frac{\sin \Delta x}{\Delta x} \cos x\right]=\cos x . \tag{2.1.2}
\end{equation*}
$$

In other words，the derivative of the sine function is cosine．
On the other hand，let $g(x)=\cos x$ ．Then $g(x)=-f\left(x-\frac{\pi}{2}\right)$ ．Then if $\Delta x \neq 0$ ，

$$
\frac{g(x+\Delta x)-g(x)}{\Delta x}=-\frac{f\left(x-\frac{\pi}{2}+\Delta x\right)-f\left(x-\frac{\pi}{2}\right)}{\Delta x}
$$

thus

$$
\lim _{\Delta x \rightarrow 0} \frac{g(x+\Delta x)-g(x)}{\Delta x}=-\cos \left(x-\frac{\pi}{2}\right)=-\sin x .
$$

In other words，the derivative of the cosine function is minus sine．To summarize，

$$
\begin{equation*}
\frac{d}{d x} \sin x=\cos x \quad \text { and } \quad \frac{d}{d x} \cos x=-\sin x \tag{2.1.3}
\end{equation*}
$$

Remark 2．8．If f is a function defined on a interval I ，and c is one of the end－point．Then it is possible to define the one－sided derivative．For example，if c is the left end－point of I ， then we can consider the limit

$$
\lim _{\Delta x \rightarrow 0^{+}} \frac{f(c+\Delta x)-f(c)}{\Delta x}=\lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c}
$$

if it exists．The limit above，if exists，is called the derivatives of f at c from the right．

Theorem 2．9：可微必連續

Let f be a function defined on an open interval I ，and $c \in I$ ．If f is differentiable at c ，then f is continuous at c ．

Proof．If $x \neq c, f(x)-f(c)=\frac{f(x)-f(c)}{x-c}(x-c)$ ．Since the limit $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ exists and $\lim _{x \rightarrow c}(x-c)=0$ ，by Theorem 1.12 we conclude that

$$
\lim _{x \rightarrow c}[f(x)-f(c)]=\left(\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}\right)\left(\lim _{x \rightarrow c}(x-c)\right)=0 .
$$

Therefore， $\lim _{x \rightarrow c} f(x)=f(c)$ which shows that f is continuous at c ．

Remark 2.10. When f is continuous on an open interval I, f is not necessary differentiable on I. For example, consider $f(x)=|x|$. Then Theorem 1.12 implies that f is continuous on I, but $\lim _{\Delta x \rightarrow 0} \frac{f(\Delta x)-f(0)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{|\Delta x|}{\Delta x}$ D.N.E.

2.2 Rules of Differentiation

Theorem 2.11

We have the following differentiation rules:

1. If k is a constant, then $\frac{d}{d x} k=0$.
2. If n is a non-zero integer, then $\frac{d}{d x} x^{n}=n x^{n-1}$ (whenever x^{n-1} makes sense).
3. $\frac{d}{d x} \sin x=\cos x, \frac{d}{d x} \cos x=-\sin x$.
4. If k is a constant and $f:(a, b) \rightarrow \mathbb{R}$ is differentiable at $c \in(a, b)$, then $k f$ is differentiable at c and

$$
\left.\frac{d}{d x}\right|_{x=c}[k f(x)]=k f^{\prime}(c) .
$$

5. If $f, g:(a, b) \rightarrow \mathbb{R}$ are differentiable at $c \in(a, b)$, then $f \pm g$ is differentiable at c and

$$
\left.\frac{d}{d x}\right|_{x=c}[f(x) \pm g(x)]=f^{\prime}(c) \pm g^{\prime}(c) .
$$

Proof of 5. Let $h(x)=f(x)+g(x)$. Then if $\Delta x \neq 0$,

$$
\frac{h(c+\Delta x)-h(c)}{\Delta x}=\frac{f(c+\Delta x)-f(c)}{\Delta x}+\frac{g(c+\Delta x)-g(c)}{\Delta x} .
$$

Since f, g are differentiable at c,

$$
\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}=f^{\prime}(c) \quad \text { and } \quad \lim _{\Delta x \rightarrow 0} \frac{g(c+\Delta x)-g(c)}{\Delta x}
$$

exist. Therefore, by Theorem 1.12,

$$
h^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c) .
$$

The conclusion for the difference can be proved in the same way.

Example 2.12. Let $f(x)=3 x^{2}-5 x+7$. Then

$$
\begin{aligned}
\frac{d}{d x} f(x) & =\frac{d}{d x}\left(3 x^{2}-5 x\right)+\frac{d}{d x} 7=\frac{d}{d x}\left(3 x^{2}\right)-\frac{d}{d x}(5 x) \\
& =3 \frac{d}{d x} x^{2}-5 \frac{d}{d x} x=3 \cdot(2 x)-5=6 x-5
\end{aligned}
$$

In general, for a polynomial function

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \equiv \sum_{k=0}^{n} a_{k} x^{k}
$$

where $a_{0}, a_{1}, \cdots, a_{n} \in \mathbb{R}$, by induction we can show that

$$
\frac{d}{d x} p(x)=n a_{n} x^{n-1}+(n-1) a_{n-1} x^{n-2}+\cdots+a_{1}=\sum_{k=1}^{n} k a_{k} x^{k-1} .
$$

Theorem 2.13: Product Rule

Let $f, g:(a, b) \rightarrow \mathbb{R}$ be real-valued functions, and $c \in(a, b)$. If f and g are differentiable at c, then $f g$ is differentiable at c and

$$
\left.\frac{d}{d x}\right|_{x=c}(f g)(x)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c) .
$$

Proof. Let $h(x)=f(x) g(x)$. Then

$$
\begin{aligned}
h(c+\Delta x)-h(c) & =f(c+\Delta x) g(c+\Delta x)-f(c) g(c) \\
& =f(c+\Delta x) g(c+\Delta x)-f(c) g(c+\Delta x)+f(c) g(c+\Delta x)-f(c) g(c) \\
& =[f(c+\Delta x)-f(c)] g(c+\Delta x)+f(c)[g(c+\Delta x)-g(c)] .
\end{aligned}
$$

Therefore, if $\Delta x \neq 0$,

$$
\frac{h(c+\Delta x)-h(c)}{\Delta x}=\frac{f(c+\Delta x)-f(c)}{\Delta x} g(c+\Delta x)+f(c) \frac{g(c+\Delta x)-g(c)}{\Delta x} .
$$

Since f, g are differentiable at c,

$$
\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}=f^{\prime}(c), \lim _{\Delta x \rightarrow 0} \frac{g(c+\Delta x)-g(c)}{\Delta x}, \text { and } \lim _{\Delta x \rightarrow 0} g(c+\Delta x)=g(c)
$$

exist. By Theorem 1.12,

$$
h^{\prime}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c)
$$

which concludes the product rule.

Example 2.14. Let $f(x)=x^{3} \sin x$. Then the product rule implies that

$$
f^{\prime}(x)=3 x^{2} \sin x+x^{3} \cos x .
$$

Theorem 2.15: Quotient Rule

Let $f, g:(a, b) \rightarrow \mathbb{R}$ be real-valued functions, and $c \in(a, b)$. If f and g are differentiable at c and $g(c) \neq 0$, then $\frac{f}{g}$ is differentiable at c and

$$
\left.\frac{d}{d x}\right|_{x=c} \frac{f}{g}(x)=\frac{f^{\prime}(c) g(c)-f(c) g^{\prime}(c)}{g(c)^{2}} .
$$

Proof. Let $h(x)=\frac{f(x)}{g(x)}$. Then

$$
\begin{aligned}
h(c+\Delta x)-h(c) & =\frac{f(c+\Delta x)}{g(c+\Delta x)}-\frac{f(c)}{g(c)}=\frac{f(c+\Delta x) g(c)-f(c) g(c+\Delta x)}{g(c) g(c+\Delta x)} \\
& =\frac{f(c+\Delta x) g(c)-f(c) g(c)+f(c) g(c)-f(c) g(c+\Delta x)}{g(c) g(c+\Delta x)} \\
& =\frac{[f(c+\Delta x)-f(c)] g(c)-f(c)[g(c+\Delta x)-g(c)]}{g(c) g(c+\Delta x)} .
\end{aligned}
$$

Therefore, if $\Delta x \neq 0$,

$$
\frac{h(c+\Delta x)-h(c)}{\Delta x}=\frac{1}{g(c) g(c+\Delta x)}\left[\frac{f(c+\Delta x)-f(c)}{\Delta x} g(c)-f(c) \frac{g(c+\Delta x)-g(c)}{\Delta x}\right] .
$$

Since f, g are differentiable at c,

$$
\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}=f^{\prime}(c), \lim _{\Delta x \rightarrow 0} \frac{g(c+\Delta x)-g(c)}{\Delta x}, \text { and } \lim _{\Delta x \rightarrow 0} g(c+\Delta x)=g(c)
$$

exist. By Theorem 1.12,

$$
h^{\prime}(c)=\frac{1}{g(c)^{2}}\left[f^{\prime}(c) g(c)-f(c) g^{\prime}(c)\right]
$$

which concludes the quotient rule.
Example 2.16. Let n be a positive integer and $f(x)=x^{-n}$. We have shown by definition that $f^{\prime}(x)=-n x^{-n-1}$ if $x \neq 0$. Now we use Theorem 2.15 to compute the derivative of f : if $x \neq 0$,

$$
\frac{d}{d x} x^{-n}=\frac{d}{d x} \frac{1}{x^{n}}=-\frac{\frac{d}{d x} x^{n}}{x^{2 n}}=-\frac{n x^{n-1}}{x^{2 n}}=-n x^{-n-1}
$$

Example 2.17. Since $\tan x=\frac{\sin x}{\cos x}$, by Theorem 2.15 we have

$$
\frac{d}{d x} \tan x=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x
$$

Similarly, we also have

$$
\begin{aligned}
\frac{d}{d x} \cot x & =\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x}=-\csc ^{2} x, \\
\frac{d}{d x} \sec x & =-\frac{-\sin x}{\cos ^{2} x}=\sec x \tan x, \\
\frac{d}{d x} \csc x & =-\frac{\cos x}{\sin ^{2} x}=-\cot x \csc x .
\end{aligned}
$$

- Higher-order derivatives:

Let f be defined on an open interval $I=(a, b)$. If f^{\prime} exists on I and possesses derivatives at every point in I, by definition we use $f^{\prime \prime}$ to denote the derivative of f^{\prime}.In other words,

$$
f^{\prime \prime}(x)=\frac{d}{d x} f^{\prime}(x)=\frac{d}{d x} \frac{d}{d x} f(x) \equiv \frac{d^{2}}{d x^{2}} f(x)=\frac{d^{2} f(x)}{d x^{2}}\left(=\frac{d^{2} y}{d x^{2}} \text { if } y=f(x)\right) .
$$

The function $f^{\prime \prime}$ is called the second derivative of f. Similar as the "first" derivative case, $f^{\prime \prime}(c)=\left.\frac{d^{2}}{d x^{2}}\right|_{x=c} f(x)$.

The third derivatives and even higher-order derivatives are denoted by the following: if $y=f(x)$,

Third derivative: $y^{\prime \prime \prime} \quad f^{\prime \prime \prime}(x) \quad \frac{d^{3}}{d x^{3}} f(x) \quad \frac{d^{3} f(x)}{d x^{3}}$
Fourth derivative: $y^{(4)} \quad f^{(4)}(x) \quad \frac{d^{4}}{d x^{4}} f(x) \quad \frac{d^{4} f(x)}{d x^{4}}$
n-th derivative: $y^{(n)} \quad f^{(n)}(x) \quad \frac{d^{n}}{d x^{n}} f(x) \quad \frac{d^{n} f(x)}{d x^{n}}$.

