微積分 MA1001－A 上課筆記（精簡版） 2018．09．20．

Ching－hsiao Arthur Cheng 鄭經敘

Definition 1.7

Let f be a function defined on an open interval containing c（except possibly at c ）， and L be a real number．The statement

$$
\lim _{x \rightarrow c} f(x)=L, \quad \text { read "the limit of } f \text { at } c \text { is } L ",
$$

means that for each $\varepsilon>0$ there exists a $\delta>0$ such that

$$
|f(x)-L|<\varepsilon \text { if } 0<|x-c|<\delta
$$

Theorem 1.12

Let b, c be real numbers，f, g be functions with $\lim _{x \rightarrow c} f(x)=L, \lim _{x \rightarrow c} g(x)=K$ ．Then
1． $\lim _{x \rightarrow c} b=b, \lim _{x \rightarrow c} x=c, \lim _{x \rightarrow c}|x|=|c|$ ；
2． $\lim _{x \rightarrow c}[f(x) \pm g(x)]=L+K$ ；（和或差的極限等於極限的和或差）
3． $\lim _{x \rightarrow c}[f(x) g(x)]=L K$ ；（乘積的極限等於極限的乘積）
4． $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{K}$ if $K \neq 0$ ．（若分母極限不為零，則商的極限等於極限的商）

Theorem 1.15

If $c>0$ and n is a positive integer，then $\lim _{x \rightarrow c} x^{\frac{1}{n}}=c^{\frac{1}{n}}$ ．

Theorem 1.16

If f and g are functions such that $\lim _{x \rightarrow c} g(x)=K, \lim _{x \rightarrow K} f(x)=L$ and $L=f(K)$ ，then

$$
\lim _{x \rightarrow c}(f \circ g)(x)=L
$$

Theorem 1．18：Squeeze Theorem（夾擠定理）

Let f, g, h be functions defined on an interval containing c（except possibly at c ），and $h(x) \leqslant f(x) \leqslant g(x)$ if $x \neq c$ ．If $\lim _{x \rightarrow c} h(x)=\lim _{x \rightarrow c} g(x)=L$ ，then $\lim _{x \rightarrow c} f(x)$ exists and is equal to L ．

Example 1．20．In this example we consider the limit of the sine function at a real number
c. Before proceeding, let us first establish a fundamental inequality

$$
\begin{equation*}
|\sin x| \leqslant|x| \quad \text { for all real numbers } x \text { (in radian unit). } \tag{1.2.1}
\end{equation*}
$$

To see (1.2.1), it suffices to consider the case when $0<x<\frac{\pi}{2}$ for otherwise

1. it trivially holds that $|\sin x| \leqslant x$ if $x=0$ or $x \geqslant \frac{\pi}{2}$;
2. if $x<0$, then $|\sin x|=|\sin (-x)| \leqslant|-x|=|x|$.

Now suppose that $0<x<\frac{\pi}{2}$. Consider x as a central angle (in radian unit) of a circle of radius 1 . Then $\frac{\sin x}{2}$ is the largest area of triangles inside the sector, while $\frac{x}{2}$ is the area of the sector. Since the area of the sector is larger than the area of triangles inside the sector, we conclude (1.2.1) for the case $0<x<\frac{\pi}{2}$.

Figure 1.5: The area of the black triangle is smaller than the area of the sector
Now note that the sum and difference formulas

$$
\sin (\theta \pm \phi)=\sin \theta \cos \phi \pm \sin \phi \cos \theta
$$

provide that

$$
\begin{aligned}
\sin x & -\sin c \\
& =\sin \left(\frac{x+c}{2}+\frac{x-c}{2}\right)-\sin \left(\frac{x+c}{2}-\frac{x-c}{2}\right) \\
& =\sin \frac{x+c}{2} \cos \frac{x-c}{2}+\sin \frac{x-c}{2} \cos \frac{x+c}{2}-\left[\sin \frac{x+c}{2} \cos \frac{x-c}{2}-\sin \frac{x-c}{2} \cos \frac{x+c}{2}\right] \\
& =2 \sin \frac{x-c}{2} \cos \frac{x+c}{2}
\end{aligned}
$$

thus using (1.2.1),

$$
|\sin x-\sin c| \leqslant 2\left|\sin \frac{x-c}{2}\right| \leqslant|x-c| \quad \text { for all real number } x .
$$

Therefore, $\sin c-|x-c| \leqslant \sin x \leqslant \sin c+|x-c|$ for all real number x, and the Squeeze Theorem then implies that $\lim _{x \rightarrow c} \sin x=\sin c$ since $\lim _{x \rightarrow c}|x-c|=0$.

Similarly, using the sum and difference formulas

$$
\cos (\theta \pm \phi)=\cos \theta \cos \phi \mp \sin \theta \sin \phi,
$$

we can also conclude that $\lim _{x \rightarrow c} \cos x=\cos c$. The detail is left as an exercise.
By Theorem 1.12, Example 1.20 shows the following

Theorem 1.21

Let c be a real number in the domain of the given trigonometric functions.

1. $\lim _{x \rightarrow c} \sin x=\sin c$;
2. $\lim _{x \rightarrow c} \cos x=\sin c$;
3. $\lim _{x \rightarrow c} \tan x=\tan c$;
4. $\lim _{x \rightarrow c} \cot x=\cot c$;
5. $\lim _{x \rightarrow c} \sec x=\sec c$;
6. $\lim _{x \rightarrow c} \csc x=\csc c$.

Example 1.22. In this example we compute $\lim _{x \rightarrow 0} x \sin \frac{1}{x}$ if it exists. Note that if the limit exists, we cannot apply 3 of Theorem 1.12 to find the limit since $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist. On the other hand, since $\left|x \sin \frac{1}{x}\right| \leqslant|x|$ if $x \neq 0,-|x| \leqslant x \sin \frac{1}{x} \leqslant|x|$ if $x \neq 0$. By the fact that $\lim _{x \rightarrow 0}|x|=\lim _{x \rightarrow 0}(-|x|)=0$, the Squeeze Theorem implies that $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$.

Figure 1.6: The graph of function $y=x \sin \frac{1}{x}$

1.2.1 One-sided limits and limits as $x \rightarrow \pm \infty$

Suppose that f is a function defined (only) on one side of a point c, it is also possible to consider the one-sided limit $\lim _{x \rightarrow c^{+}} f(x)$ or $\lim _{x \rightarrow c^{-}} f(x)$, where the notation $x \rightarrow c^{+}$and $x \rightarrow c^{-}$
means that x is taken from the right-hand side and left-hand side of c, respectively, and becomes arbitrarily close to c. In other words, $\lim _{x \rightarrow c^{+}} f(x)$ means the value to which $f(x)$ approaches as x approaches to c from the right, while $\lim _{x \rightarrow c^{-}} f(x)$ means the value to which $f(x)$ approaches as x approaches to c from the left.

Definition 1.23: One-sided limits

Let f be a function defined on an interval with c as the left/right end-point, and L be a real number. The statement

$$
\lim _{x \rightarrow c^{+}} f(x)=L / \lim _{x \rightarrow c^{-}} f(x)=L
$$

read "the right/left(-hand) limit of f at c is L " or "the limit of f at c from the right/ left is L ", means that for each $\varepsilon>0$ there exists a $\delta>0$ such that

$$
|f(x)-L|<\varepsilon \text { if } 0<(x-c)<\delta /-\delta<x-c<0
$$

Example 1.24. In this example we show that $\lim _{x \rightarrow 0^{+}} x^{\frac{1}{n}}=0$. Let $\varepsilon>0$ be given. Define $\delta=\varepsilon^{n}$. Then $\delta>0$ and if $0<x<\delta$, we have

$$
\left|x^{\frac{1}{n}}-0\right|=x^{\frac{1}{n}}<\delta^{\frac{1}{n}}=\epsilon
$$

We note that Theorem 1.12, Corollary 1.14, Theorem 1.15, 1.16 and 1.18 are also valid when the limits are replaced by one-sided limits (and the precise statements will be provided in the next lecture).

Theorem 1.25

Let f be a function defined on an open interval containing c (except possibly at c). The limit $\lim _{x \rightarrow c} f(x)$ exists if and only if $\lim _{x \rightarrow c^{+}} f(x)$ and $\lim _{x \rightarrow c^{-}} f(x)$ both exist and are identical. In either case,

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{-}} f(x) .
$$

Example 1.26. In this example we compute a very important limit

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \tag{1.2.2}
\end{equation*}
$$

To see this, we first establish the inequality

$$
\begin{equation*}
\sin x \leqslant x \leqslant \tan x \quad \text { for all } 0<x<\frac{\pi}{2} . \tag{1.2.3}
\end{equation*}
$$

We have shown that $\sin x \leqslant x$ if $0<x<\frac{\pi}{2}$ in Example 1.20. For the other part of the inequality, again we consider x as a central angle (in radian unit) of a circle of radius 1 . Then $\frac{\tan x}{2}$ is the area of the smallest right triangle containing the sector, while $\frac{x}{2}$ is the area of the sector. Since the area of the sector is smaller than the area of triangle containing the sector, we conclude that $x \leqslant \tan x$ for the case $0<x<\frac{\pi}{2}$.

Figure 1.7: The area of the sector is smaller than the area of the triangle
Now using (1.2.3), we find that

$$
\cos x \leqslant \frac{\sin x}{x} \leqslant 1 \quad \text { for all } 0<x<\frac{\pi}{2} .
$$

The Squeeze Theorem (for one-sided limits) then implies that $\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x}=1$. On the other hand,

$$
\lim _{x \rightarrow 0^{-}} \frac{\sin x}{x}=\lim _{x \rightarrow 0^{-}} \frac{\sin (-x)}{-x}=\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x}=1 ;
$$

thus Theorem 1.25 implies that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.

