微積分 MA1001－A 上課筆記（精簡版） 2018．09．18．

Definition 1.7

Let f be a function defined on an open interval containing c（except possibly at c ）， and L be a real number．The statement

$$
\lim _{x \rightarrow c} f(x)=L, \quad \text { read "the limit of } f \text { at } c \text { is } L ",
$$

means that for each $\varepsilon>0$ there exists a $\delta>0$ such that

$$
|f(x)-L|<\varepsilon \text { if } 0<|x-c|<\delta
$$

Theorem 1.12

Let b, c be real numbers，f, g be functions with $\lim _{x \rightarrow c} f(x)=L, \lim _{x \rightarrow c} g(x)=K$ ．Then
1． $\lim _{x \rightarrow c} b=b, \lim _{x \rightarrow c} x=c, \lim _{x \rightarrow c}|x|=|c|$ ；
2． $\lim _{x \rightarrow c}[f(x) \pm g(x)]=L+K$ ；（和或差的極限等於極限的和或差）
3． $\lim _{x \rightarrow c}[f(x) g(x)]=L K$ ；（乘積的極限等於極限的乘積）
4． $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{K}$ if $K \neq 0$ ．（若分母極限不為零，則商的極限等於極限的商）

Proof．4．W．L．O．G．（Without loss of generality），we can assume that $K>0$ for otherwise we have $\lim _{x \rightarrow c}(-g)(x)=-K>0$ and

$$
\lim _{x \rightarrow c}\left(\frac{f}{g}\right)(x)=\lim _{x \rightarrow c}\left(\frac{-f}{-g}\right)(x)=\frac{\lim _{x \rightarrow c}(-f)(x)}{-K}=\frac{-L}{-K}=\frac{L}{K} .
$$

Let $\varepsilon>0$ be given．Since $\lim _{x \rightarrow c} g(x)=K$ ，there exist $\delta_{1}, \delta_{2}>0$ such that

$$
|g(x)-K|<\frac{K}{2} \quad \text { if } \quad 0<|x-c|<\delta_{1}
$$

and

$$
|g(x)-K|<\frac{K^{2} \varepsilon}{4(|L|+1)} \quad \text { if } \quad 0<|x-c|<\delta_{2}
$$

Moreover，since $\lim _{x \rightarrow c} f(x)=L$ ，there exists $\delta_{3}>0$ such that

$$
|f(x)-L|<\frac{K \varepsilon}{4} \quad \text { if } \quad 0<|x-c|<\delta_{3} .
$$

Define $\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$. Then $\delta>0$ and if $0<|x-c|<\delta$, we have

$$
\begin{aligned}
\left|\frac{f(x)}{g(x)}-\frac{L}{K}\right| & =\frac{|K f(x)-L g(x)|}{K|g(x)|} \leqslant \frac{1}{|g(x)|} \frac{|K f(x)-K L|+|K L-L g(x)|}{K} \\
& \leqslant \frac{2}{K}\left(|f(x)-L|+\frac{|L|}{K}|g(x)-K|\right) \\
& <\frac{2}{K}\left(\frac{K \varepsilon}{4}+\frac{|L|}{K} \frac{K^{2} \varepsilon}{4(|L|+1)}\right) \leqslant \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

where we have used $\frac{2}{K} \leqslant \frac{1}{|g(x)|}$ if $0<|x-c|<\delta$ to conclude the inequality. Therefore, we conclude that $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{K}$ if $K>0$.

Theorem 1.15

If $c>0$ and n is a positive integer, then $\lim _{x \rightarrow c} x^{\frac{1}{n}}=c^{\frac{1}{n}}$.

Proof. Let $\varepsilon>0$ be given. Define $\delta=\min \left\{\frac{c}{2}, \frac{n c^{\frac{n-1}{n}} \varepsilon}{2}\right\}$. Then $\delta>0$ and if $0<|x-c|<\delta$, we must have

$$
x^{\frac{n-1}{n}}+x^{\frac{n-2}{n}} c^{\frac{1}{n}}+x^{\frac{n-3}{n}} c^{\frac{2}{n}}+\cdots+x^{\frac{1}{n}} c^{\frac{n-2}{n}}+c^{\frac{n-1}{n}} \geqslant \frac{n}{2} c^{\frac{n-1}{n}} .
$$

Therefore, if $0<|x-c|<\delta$,

$$
\begin{aligned}
\left|x^{\frac{1}{n}}-c^{\frac{1}{n}}\right| & =\left|\frac{x-c}{x^{\frac{n-1}{n}}+x^{\frac{n-2}{n}} c^{\frac{1}{n}}+x^{\frac{n-3}{n}} c^{\frac{2}{n}}+\cdots+x^{\frac{1}{n}} c^{\frac{n-2}{n}}+c^{\frac{n-1}{n}}}\right| \\
& \leqslant \frac{2}{n} c^{-\frac{n-1}{n}}|x-c|<\frac{2}{n} c^{-\frac{n-1}{n}} \delta \leqslant \frac{2}{n} c^{-\frac{n-1}{n}} \frac{n c^{\frac{n-1}{n}} \varepsilon}{2}=\varepsilon
\end{aligned}
$$

which implies that $\lim _{x \rightarrow c} x^{\frac{1}{n}}=c^{\frac{1}{n}}$.

Theorem 1.16

If f and g are functions such that $\lim _{x \rightarrow c} g(x)=K, \lim _{x \rightarrow K} f(x)=L$ and $L=f(K)$, then

$$
\lim _{x \rightarrow c}(f \circ g)(x)=L
$$

Proof．Let $\varepsilon>0$ be given．Since $\lim _{x \rightarrow L} f(x)=L$ ，there exists $\delta_{1}>0$ such that

$$
|f(x)-L|<\varepsilon \quad \text { if } \quad 0<|x-K|<\delta_{1}
$$

Since $L=f(K)$ ，the statement above implies that

$$
|f(x)-L|<\varepsilon \quad \text { if } \quad|x-K|<\delta_{1}
$$

Fix such δ_{1} ．Since $\lim _{x \rightarrow c} g(x)=K$ ，there exists $\delta>0$ such that

$$
|g(x)-K|<\delta_{1} \quad \text { if } \quad 0<|x-c|<\delta .
$$

Therefore，if $0<|x-c|<\delta,|(f \circ g)(x)-L|=|f(g(x))-L|<\varepsilon$ which concludes the theorem．

Remark 1．17．In the theorem above，the condition $L=f(K)$ is important，even though intuitively if $g(x) \rightarrow K$ as $x \rightarrow c$ and $f(x) \rightarrow L$ as $x \rightarrow K$ then $(f \circ g)(x)$ should approach L as x approaches c ．A counter－example is given by the following two functions：f is the function given in Example 1.2 （from the previous lecture）and g is a constant function with value 2．This example／theorem demonstrates an important fact：intuition could be wrong！ That is the reason why mathematicians develop the ε－δ language in order to explain ideas of limits rigorously．

Theorem 1．18：Squeeze Theorem（夾擠定理）

Let f, g, h be functions defined on an interval containing c（except possibly at c ），and $h(x) \leqslant f(x) \leqslant g(x)$ if $x \neq c$ ．If $\lim _{x \rightarrow c} h(x)=\lim _{x \rightarrow c} g(x)=L$ ，then $\lim _{x \rightarrow c} f(x)$ exists and is equal to L ．

Proof．Let $\varepsilon>0$ ．Since $\lim _{x \rightarrow c} h(x)=\lim _{x \rightarrow c} g(x)=L$ ，there exist $\delta_{1}, \delta_{2}>0$ such that

$$
|h(x)-L|<\varepsilon \quad \text { if } \quad 0<|x-c|<\delta_{1}
$$

and

$$
|g(x)-L|<\varepsilon \quad \text { if } \quad 0<|x-c|<\delta_{2} .
$$

Define $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ ．Then $\delta>0$ and if $0<|x-c|<\delta$ ，

$$
L-\varepsilon<h(x) \leqslant f(x) \leqslant g(x)<L+\varepsilon
$$

which implies that $|f(x)-L|<\varepsilon$ whenever $0<|x-c|<\delta$ ．

Example 1.19. Find $\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}$.
Let $f(x)=\frac{\sqrt{x+1}-1}{x}$. If $x \neq 0$,

$$
f(x)=\frac{(\sqrt{x+1}-1)(\sqrt{x+1}+1)}{x(\sqrt{x+1}+1)}=\frac{1}{\sqrt{x+1}+1} \equiv g(x) .
$$

To see the limit of g, note that

$$
\lim _{x \rightarrow 0} \sqrt{x+1}=1 \quad(\text { by Theorem 1.16) }
$$

thus by Theorem $1.12 \lim _{x \rightarrow 0} g(x)=\frac{1}{2}$.

