微積分 MA1001－A 上課筆記（精簡版） 2019．01．20．

Ching－hsiao Arthur Cheng 鄭經敘

7.6 Moments, Centers of Mass, and Centroids

- Center of mass in a one-dimensional system

Let $m_{1}, m_{2}, \cdots, m_{n}$ be n point masses located at $x_{1}, x_{2}, \cdots, x_{n}$ on a (massless) rigid x-axis supported by a fulcrum at the origin.

Each mass m_{k} exerts a downward force $m_{k} g$ (which is negative), and each of these forces has a tendency to turn the x-axis about the origin. This turning effect, called a torque, is measured by multiplying the force $m_{k} g$ by the signed distance x_{k} from the point of application to the origin. By convention, a positive torque induces a counterclockwise turn.

The sum of these torques measures the tendency of the system to rotate about the fultrum/origin. This sum is called the system torque; thus

$$
\text { System torque }=m_{1} g x_{1}+m_{2} g x_{2}+\cdots+m_{n} g x_{n}=g\left(m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}\right) .
$$

The system will balance if and only if its torque is zero. The number $M_{0} \equiv m_{1} x_{1}+m_{2} x_{2}+$ $\cdots+m_{n} x_{n}$ is called the moment of the system about the origin, and is the sum of moments $m_{1} x_{1}, m_{2} x_{2}, \cdots, m_{n} x_{n}$ of individual masses. If M_{0} is 0 , then the system is said to be in equilibrium.

For a system that is not in equilibrium, the center of mass (of the system) is defined as the point \bar{x} at which the fulcrum could be relocated to attain equilibrium.

Such an \bar{x} must satisfy

$$
0=m_{1}\left(x_{1}-\bar{x}\right)+m_{2}\left(x_{2}-\bar{x}\right)+\cdots+m_{n}\left(x_{n}-\bar{x}\right)
$$

which implies that

$$
\bar{x}=\frac{\sum_{i=1}^{n} m_{i} x_{i}}{\sum_{i=1}^{n} m_{i}}=\frac{\text { moment of system about the origin }}{\text { total mass of system }} .
$$

Definition 7.20

Let the point masses $m_{1}, m_{2}, \cdots, m_{n}$ be located at $x_{1}, x_{2}, \cdots, x_{n}$ (on a coordinate line).

1. The moment about the origin is

$$
M_{0}=m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n} .
$$

2. The center of mass \bar{x} is $\frac{M_{0}}{m}$, where $m=m_{1}+m_{2}+\cdots+m_{n}$ is the total mass of the system.

- Center of mass in a two-dimensional system

Definition 7.21

Let the point masses $m_{1}, m_{2}, \cdots, m_{n}$ be located at $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$ (on a plane).

1. The moment about the y-axis is

$$
M_{y}=m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}
$$

2. The moment about the x-axis is

$$
M_{x}=m_{1} y_{1}+m_{2} y_{2}+\cdots+m_{n} y_{n}
$$

3. The center of mass (\bar{x}, \bar{y}) is

$$
\bar{x}=\frac{M_{y}}{m} \quad \text { and } \quad \bar{y}=\frac{M_{x}}{m}
$$

where $m=m_{1}+m_{2}+\cdots+m_{n}$ is the total mass of the system.

- Center of mass of a planar lamina

Consider an irregularly shaped thin flat plate of material (called lamina) of uniform density ϱ (a measure of mass per unit of area), bounded by the graphs of $y=f(x), y=g(x)$, and $x=a, x=b$, as shown in the following figure.

Then the density of this region is

$$
m=\varrho \int_{a}^{b}[f(x)-g(x)] d x=\varrho A
$$

where A is the area of this region.
Partition $[a, b]$ into n sub-intervals with equal width Δx, and let x_{i} be the mid-point of the i-th sub-interval. The area of the portion on the i-th sub-interval can be approximated by $\left[f\left(x_{i}\right)-g\left(x_{i}\right)\right] \Delta x$; thus the mass of the portion on the i-th sub-interval can be approximated by $\varrho\left[f\left(x_{i}\right)-g\left(x_{i}\right)\right] \Delta x$. Now, considering this mass to be located at the center $\left(x_{i}, \frac{f\left(x_{i}\right)+g\left(x_{i}\right)}{2}\right)$, the moment of this mass about the x-axis is

$$
\varrho\left[f\left(x_{i}\right)-g\left(x_{i}\right)\right] \Delta x \frac{f\left(x_{i}\right)+g\left(x_{i}\right)}{2}
$$

Summing all the moments and passing to the limit as $n \rightarrow \infty$ suggest the following

Definition 7.22

Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous such that $f(x) \geqslant g(x)$ for all $x \in[a, b]$, and consider the lamina of uniform density ϱ bounded by the graphs of f, g and the lines $x=a$, $x=b$.

1. The moment about the x-axis and the y-axis are

$$
M_{x}=\frac{\varrho}{2} \int_{a}^{b}\left[f(x)^{2}-g(x)^{2}\right] d x \quad \text { and } \quad M_{y}=\varrho \int_{a}^{b} x[f(x)-g(x)] d x .
$$

2. The center of mass (\bar{x}, \bar{y}) is given by $\bar{x}=\frac{M_{y}}{m}$ and $\bar{y}=\frac{M_{x}}{m}$, where $m=$ $\varrho \int_{a}^{b}[f(x)-g(x)] d x$ is the mass of the lamina.

The center of mass of a lamina of uniform density depends only on the shape of the lamina but not on its density. For this reason, the center of mass of a region in the plain is also called the centroid of the region.

Example 7.22. Compute the centroid of a triangle with vertex $(0,0),\left(a, b_{1}\right)$ and $\left(a, b_{2}\right)$, where $a>0$ and $b_{1}<b_{2}$.

Let $f(x)=\frac{b_{2}}{a} x$ and $g(x)=\frac{b_{1}}{a} x$. Then the triangle given above is the region bounded by the graphs of f, g and $x=a$. Assume uniform density $\varrho=1$. Then the moment of the region about the x-axis is

$$
M_{x}=\frac{1}{2} \int_{0}^{a}\left(\frac{b_{2}^{2}}{a^{2}}-\frac{b_{1}^{2}}{a^{2}}\right) x^{2} d x=\frac{a\left(b_{2}^{2}-b_{1}^{2}\right)}{6}
$$

and the moment of the region about the y-axis is

$$
M_{y}=\int_{0}^{a} x\left[\frac{b_{2}}{a}-\frac{b_{1}}{a}\right] x d x=\frac{a^{2}\left(b_{2}-b_{1}\right)}{3},
$$

as well as the total mass

$$
m=\int_{0}^{a}\left[\frac{b_{2}}{a}-\frac{b_{1}}{a}\right] x d x=\frac{a\left(b_{2}-b_{1}\right)}{2} .
$$

Therefore, the centroid of the given triangle is

$$
(\bar{x}, \bar{y})=\left(\frac{2 a}{3}, \frac{b_{1}+b_{2}}{3}\right) .
$$

Theorem 7.23: Pappus

Let R be a region in a plane and L be a line in the same plane such that L does not intersect the interior of R. If r is the distance between the centroid of R and the line, then the volume V of the solid of revolution formed by revolving R about the line is

$$
V=2 \pi r A
$$

where A is the area of R.

Proof. We draw the axis of revolution as the x-axis with the region R in the first quadrant (see figure below).

Let $L(y)$ be the length of the cross section of R perpendicular to the y-axis at y, and we assume that L is continuous on $[c, d]$. Then the area of R is given by

$$
A=\int_{c}^{d} L(y) d y
$$

and the shell method implies that the volume of the solid formed by revolving R about the x-axis is

$$
V=2 \pi \int_{c}^{d} y L(y) d y
$$

On the other hand, if r denotes the distance between the centroid of R and the x-axis, then r is the y-coordinate of the centroid of R and is given by

$$
r=\frac{\text { the moment of the region about the } x \text {-axis }}{\text { the total mass of the region }}=\frac{\int_{c}^{d} y L(y) d y}{\int_{c}^{d} L(y) d y}
$$

which validates the relation $V=2 \pi r A$.
Example 7.24. Using the Pappus theorem, the volume of the solid torus given in Example 7.2 is

$$
2 \pi a\left(\pi r^{2}\right)=2 \pi^{2} a r^{2}
$$

since the centroid of a disk is the center of the disk.

