Extra Exercise Problem Sets 6

Problem 1. In this exercise problem you are asked to show Stirling's formula

$$\lim_{n \to \infty} \frac{n!}{n^{n+0.5}e^{-n}} = \sqrt{2\pi}$$

through the following steps.

1. Show that the function $y = (1+x)^{\frac{1}{x}+0.5}$ is increasing on $(0, \frac{1}{2})$.

Hint: Show that the function $y = \left(\frac{1}{x} + \frac{1}{2}\right) \ln(1+x)$ is increasing on $\left(0, \frac{1}{2}\right)$ (you might want to show first that $\ln(1+x) \leq x - \frac{x^2}{2} + \frac{x^3}{3}$ for all $x \in (0,1)$) to conclude the monotonicity.

- 2. Let $s_n = \frac{n!}{n^{n+0.5}e^{-n}}$. Show that $s_n \ge s_{n+1} \ge 0$ for all $n \ge 2$. Therefore, the completeness of the real number implies that $\lim_{n \to \infty} s_n = s$ exists (You do not have to show the red part. Just take it for granted if it is shown that $s_n \ge s_{n+1} \ge 0$ then the limit of s_n exists).
- 3. Let $I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx$. Show that $\lim_{n \to \infty} \frac{I_{2n+1}}{I_{2n}} = 1$. **Hint**: Show that $\frac{I_{2n+2}}{I_{2n}} \leq \frac{I_{2n+1}}{I_{2n}} \leq 1$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} \frac{I_{2n+2}}{I_{2n}} = 1$. You will need Wallis's formula.
- 4. Conclude that $\lim_{n \to \infty} s_n = \sqrt{2\pi}$.