## Extra Exercise Problem Sets 4

Nov. 8. 2018

Problem 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function, and $f$ is Riemann integrable on $[a, b]$. Show that $f$ must be bounded on $[a, b]$; that is, there exists a real number $M>0$ such that $|f(x)| \leqslant M$ for all $a \leqslant x \leqslant b$.

Problem 2. Let $a<b$ be real numbers. Compute $\int_{a}^{b} \cos x d x$ by the following steps.
(a) Partition $[a, b]$ into $n$ sub-intervals with equal length. Write down the Riemann sum using the right end-point rule.
(b) Prove that

$$
\begin{equation*}
\sum_{i=1}^{n} \cos (a+i d)=\frac{\sin \left[a+\left(n+\frac{1}{2}\right) d\right]-\sin \left(a+\frac{d}{2}\right)}{2 \sin \frac{d}{2}} \tag{*}
\end{equation*}
$$

Hint: Use the sum and difference formula $\sin (\vartheta+\varphi)-\sin (\vartheta-\varphi)=2 \sin \vartheta \cos \varphi$.
(c) Use ( $\star$ ) to simplify the Riemann sum in (a), and find the limit of the Riemann sum as $n$ approaches infinity. Show that

$$
\int_{a}^{b} \cos x d x=\sin b-\sin a
$$

Problem 3. Let $a<b$ be real numbers. Compute $\int_{a}^{b} x^{m} d x$, where $m$ is a non-negative integer, by the following steps.
(a) Partition $[a, b]$ into $n$ sub-intervals with equal length. Show that the Riemann sum using the right end-point rule is given by

$$
I_{n}=\sum_{k=0}^{m}\left[C_{k}^{m} a^{m-k}(b-a)^{k+1}\left(\frac{1}{n^{k+1}} \sum_{i=1}^{n} i^{k}\right)\right],
$$

where $C_{k}^{m}=\frac{m!}{k!(m-k)!}$.
(b) Show that

$$
\sum_{i=1}^{n} i^{k}=\frac{1}{k+1}(n+1)^{k+1}-\frac{1}{k+1}\left[C_{k-1}^{k+1} \sum_{i=1}^{n} i^{k-1}+\cdots+C_{1}^{k+1} \sum_{i=1}^{n} i+(n+1)\right]
$$

Hint: Expand $(j+1)^{k}$ for $j=0,1,2, \cdots, n$ by the binomial expansion formula, and sum over $j$ to obtain the equality above.
(c) Use ( $\star \star$ ) to show that $\lim _{n \rightarrow \infty} \frac{1}{n^{k+1}} \sum_{i=1}^{n} i^{k}=\frac{1}{k+1}$.
(d) Use the limit in (c) to find the limit of the Riemann sum in (a) by passing to the limit as $n$ approaches infinity. Simplify the result to show that

$$
\int_{a}^{b} x^{m} d x=\frac{b^{m+1}-a^{m+1}}{m+1}
$$

Problem 4. Let $a>0$ and $b>1$. Compute $\int_{1}^{b} \log _{a} x d x$ by the following steps.
(a) Partition $[1, a]$ into $n$ sub-intervals by $x_{i}=r^{i}$, where $1 \leqslant i \leqslant n$ and $r=b^{\frac{1}{n}}$. Show that the Riemann sum given by the right end-point rule is

$$
(r-1) \log _{a} r \sum_{i=1}^{n} i r^{i-1} .
$$

(b) Use the fact that $\frac{d}{d r} r^{i}=i r^{i-1}$ to find the sum of $i r^{i-1}$ and show that

$$
\sum_{i=1}^{n} i r^{i-1}=\frac{n r^{n+1}-(n+1) r^{n}+1}{(r-1)^{2}}
$$

(c) Use $(\diamond)$ and $(\diamond)$ to simplify the Riemann sum given by the right end-point rule and show that the Riemann sum is

$$
\frac{n b r-n b-b+1}{n(r-1)} \log _{a} b=\left[b-\frac{b-1}{n(r-1)}\right] \log _{a} b .
$$

(d) Assuming that you know $\left.\frac{d}{d x}\right|_{x=0} b^{x}=A(a) \log _{a} b$ for some constant $A>0$ depending on $a$, show that

$$
\int_{1}^{b} \log _{a} x d x=b \log _{a} b-\frac{b-1}{A(a)} .
$$

Problem 5. Determine the following limits by identifying the limits as limits of certain Riemann sums so that the limits are the same as certain integrals.

1. $\lim _{n \rightarrow \infty} \frac{\sqrt{1}+\sqrt{2}+\sqrt{3}+\cdots+\sqrt{n}}{n^{\frac{3}{2}}}$.
2. $\lim _{n \rightarrow \infty}\left[\frac{1}{\sqrt{n^{2}+2 n}}+\frac{1}{\sqrt{n^{2}+4 n}}+\frac{1}{\sqrt{n^{2}+6 n}}+\cdots+\frac{1}{\sqrt{n^{2}+2 n^{2}}}\right]$.
