Calculus MA1001-A Midterm 2 Sample

National Central University, Dec. 17, 2018

Problem 1. 定理、定義敘述題。

Problem 2. Find $\frac{d}{dx} \int_{\ln x}^{\arctan x} 3^{-u^2} du$ for x > 0. (Fundamental Theorem of Calculus)

Problem 3. Find $\lim_{x\to 0} \frac{1}{x} \exp\left(-\frac{1}{x^2}\right)$. (L'Hôspital's rule)

Problem 4. Find the following indefinite integrals: (integration by substitution)

1.
$$\int \frac{\sqrt{1+\ln x}}{x\ln x} \, dx. \qquad 2. \quad \int \frac{\sqrt{x}}{4+x^3} \, dx.$$

Problem 5. Complete the following.

- 1. Let 0 < a < c < b. Prove that $\frac{x-c}{c} + \ln c \ge \ln x$ for all $a \le x \le b$. (the second derivative test) **Hint**: Define $f(x) = \ln x - \frac{x-c}{c} - \ln c$. Show that if a < d < b, f(d) cannot be the maximum of f on [a, b]; thus the maximum of f on [a, b] must be attained at the end-point a or b. Use this fact to conclude the desired inequality.
- 2. Interpret the inequality above geometrically (by drawing the figures of functions $y = \ln x$ and $y = \frac{x-c}{c} + \ln c$). (tangent lines of the graph of functions)
- 3. Show that $\left(n + \frac{1}{2}\right) \ln\left(n + \frac{1}{2}\right) + \frac{1}{2} \ln 2 n \leq \ln(n!)$ for all positive integers n. (the logarithmic properties of \ln and the comparison of integrals)

Hint: Using the conclusion in 1 and 2 to draw to following figure

Evaluate the total area of these trapezoids and make use of the identity $\int_{1}^{n} \ln x \, dx = n \ln n - n + 1.$

Problem 6. Compute $\int \arcsin x \, dx$ by complete the following.

1. Use the substitution $x = \sin u$ to conclude that it suffices to compute the indefinite integral $\int x \cos x \, dx$. (integration by substitution)

2. Show that for $0 < x < \pi$,

$$\sum_{i=1}^{n} i \cos(ix) = \frac{-\cos\frac{x}{2}}{4\sin^2\frac{x}{2}} \left[\cos\frac{x}{2} - \cos\left((n+\frac{1}{2})x\right) \right] \\ + \frac{1}{2\sin\frac{x}{2}} \left[-\frac{1}{2}\sin\frac{x}{2} + (n+\frac{1}{2})\sin\left((n+\frac{1}{2})x\right) \right].$$
(*)

Hint: We have (more or less) shown in class that

$$\sum_{i=1}^{n} \sin(ix) = \frac{1}{2\sin\frac{x}{2}} \left[\cos\frac{x}{2} - \cos\left((n+\frac{1}{2})x\right) \right] \quad \text{if} \quad \sin\frac{x}{2} \neq 0.$$

Differentiate the identity above to conclude (\star) . (differentiation)

- 3. Show that $\int_0^a x \cos x \, dx = a \sin a + \cos a 1$ for all real number *a* by computing the limit of the Riemann sum of $y = x \cos x$ given by uniform partitions and the right end-point rule. (Riemann sum approximation of integrals)
- 4. Compute $\int \arcsin x \, dx$. (integration by substitution)