Calculus MA1001－A Midterm 2 Sample

National Central University，Dec．17， 2018

Problem 1．定理，定義敘述題。

Problem 2．Find $\frac{d}{d x} \int_{\ln x}^{\arctan x} 3^{-u^{2}} d u$ for $x>0$ ．（Fundamental Theorem of Calculus）
Problem 3．Find $\lim _{x \rightarrow 0} \frac{1}{x} \exp \left(-\frac{1}{x^{2}}\right)$ ．（L＇Hôspital＇s rule）
Problem 4．Find the following indefinite integrals：（integration by substitution）
1． $\int \frac{\sqrt{1+\ln x}}{x \ln x} d x$ ．
2． $\int \frac{\sqrt{x}}{4+x^{3}} d x$ ．

Problem 5．Complete the following．
1．Let $0<a<c<b$ ．Prove that $\frac{x-c}{c}+\ln c \geqslant \ln x$ for all $a \leqslant x \leqslant b$ ．（the second derivative test） Hint：Define $f(x)=\ln x-\frac{x-c}{c}-\ln c$ ．Show that if $a<d<b, f(d)$ cannot be the maximum of f on $[a, b]$ ；thus the maximum of f on $[a, b]$ must be attained at the end－point a or b ．Use this fact to conclude the desired inequality．

2．Interpret the inequality above geometrically（by drawing the figures of functions $y=\ln x$ and $y=\frac{x-c}{c}+\ln c$ ）．（tangent lines of the graph of functions）

3．Show that $\left(n+\frac{1}{2}\right) \ln \left(n+\frac{1}{2}\right)+\frac{1}{2} \ln 2-n \leqslant \ln (n!)$ for all positive integers n ．（the logarithmic properties of \ln and the comparison of integrals）

Hint：Using the conclusion in 1 and 2 to draw to following figure

Evaluate the total area of these trapezoids and make use of the identity $\int_{1}^{n} \ln x d x=n \ln n-$ $n+1$ ．
Problem 6．Compute $\int \arcsin x d x$ by complete the following．
1．Use the substitution $x=\sin u$ to conclude that it suffices to compute the indefinite integral $\int x \cos x d x$ ．（integration by substitution）
2. Show that for $0<x<\pi$,

$$
\begin{align*}
\sum_{i=1}^{n} i \cos (i x)= & \frac{-\cos \frac{x}{2}}{4 \sin ^{2} \frac{x}{2}}\left[\cos \frac{x}{2}-\cos \left(\left(n+\frac{1}{2}\right) x\right)\right] \\
& +\frac{1}{2 \sin \frac{x}{2}}\left[-\frac{1}{2} \sin \frac{x}{2}+\left(n+\frac{1}{2}\right) \sin \left(\left(n+\frac{1}{2}\right) x\right)\right] .
\end{align*}
$$

Hint: We have (more or less) shown in class that

$$
\sum_{i=1}^{n} \sin (i x)=\frac{1}{2 \sin \frac{x}{2}}\left[\cos \frac{x}{2}-\cos \left(\left(n+\frac{1}{2}\right) x\right)\right] \quad \text { if } \quad \sin \frac{x}{2} \neq 0 .
$$

Differentiate the identity above to conclude (\star). (differentiation)
3. Show that $\int_{0}^{a} x \cos x d x=a \sin a+\cos a-1$ for all real number a by computing the limit of the Riemann sum of $y=x \cos x$ given by uniform partitions and the right end-point rule. (Riemann sum approximation of integrals)
4. Compute $\int \arcsin x d x$. (integration by substitution)

