Calculus MA1001-A Midterm 1

National Central University, Nov. 1, 2018
Problem 1. Complete the following.

1. (5%) Let f be defined on an open interval I containing c. State the definition of the differentiability of f at c.
2. (5\%) State Rolle's Theorem.

Problem 2. (10\%) Compute the following limits (without using L'Hôpistal's rule in Problem 3).
(1) $\lim _{x \rightarrow 0} \frac{1-\cos x}{|x|}$
(2) $\lim _{x \rightarrow 0^{+}} \frac{\sqrt[3]{1+x}-1}{1-\cos \sqrt{x}}$.

Problem 3. (10\%) Let $f:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}$ be defined by $f(x)=\left\{\begin{array}{cl}(1-\cos x) \sin (\cot x) & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{array}\right.$ Find the derivatives of f.

Problem 4. Complete the following.
(1) (5\%) Show the Cauchy mean value theorem: Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous and f, g are differentiable on (a, b). Show that if $g(a) \neq g(b)$ and $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$, then there exists $c \in(a, b)$ such that

$$
\frac{f(a)-f(b)}{g(a)-g(b)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

(2) (10%) Suppose that f is twice continuously differentiable (i.e., $f^{\prime \prime}$ is continuous). Prove that for $a<x<b$, there exists $c \in(a, b)$ such that

$$
\frac{\frac{f(x)-f(a)}{x-a}-\frac{f(b)-f(a)}{b-a}}{x-b}=\frac{1}{2} f^{\prime \prime}(c) .
$$

(3) (5\%) Show that L'Hôpistal's rule: Let $f, g:(a, b) \rightarrow \mathbb{R}$ be differentiable, $c \in(a, b)$, and $f(c)=g(c)=0$. Suppose that $\frac{f(x)}{g(x)}$ and $\frac{f^{\prime}(x)}{g^{\prime}(x)}$ are both defined on (a, b), except possibly at c. Show that if the limit $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists, then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ exists and

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

(4) (10%) Use L'Hôpistal's rule to compute the the limit in Problem 1.

Problem 5. (10\%) Suppose that $f: \mathbb{R} \rightarrow(0, \infty)$ and $g:(0, \infty) \rightarrow \mathbb{R}$ are two strictly increasing, differentiable functions satisfying

$$
f(g(x))=x \quad \forall x \in(0, \infty), \quad g(f(x))=x \quad \forall x \in \mathbb{R},
$$

and $f(a+b)=f(a) f(b)$ for all $a, b \in \mathbb{R}$. Show that $x f^{\prime}(0) g^{\prime}(x)=1$ for all $x \in \mathbb{R}$.

Problem 6. (10\%) Suppose that x and y satisfy the relation $y \sin x=x \sin y$. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at the point $(\pi, 0)$ using the implicit differentiation.

Problem 7. Let $f:[-\pi, \pi] \rightarrow \mathbb{R}$ be given by $f(x)=-x^{2} \cos x+4 x \sin x+6 \cos x$.
(1) (5%) Find the inflection points of the graph of f.
(2) (5%) Use the first derivative test to find all the relative extrema of f^{\prime}.
(2) (10\%) Show that $|f(x)-f(y)| \leqslant 2 \pi|x-y|$ for all $x, y \in[-\pi, \pi]$.

