Calculus MA1001－A Quiz 05

National Central University，Oct． 182018
學號： \qquad姓名： \qquad
Problem 1．（4pts）Let f, g be defined on an open interval containing c and f, g be differentiable at c．Show that if $g(c) \neq 0$ ，then

$$
\left.\frac{d}{d x}\right|_{x=c}\left(\frac{f}{g}\right)(x)=\frac{f^{\prime}(c) g(c)-f(c) g^{\prime}(c)}{g(c)^{2}}
$$

Problem 2．（3pts）Find the third derivative of $f(x)=\frac{1}{1+x^{3}}$ at $x=0$ ．
Solution：Note that $f(x)\left(1+x^{3}\right)=1$ ．Therefore，the product rule implies that

$$
f^{\prime}(x)\left(1+x^{3}\right)+3 x^{2} f(x)=0 \Rightarrow f^{\prime \prime}(x)\left(1+x^{3}\right)+6 x^{2} f^{\prime}(x)+6 x f(x)=0
$$

which further implies that $f^{\prime \prime \prime}(x)\left(1+x^{3}\right)+9 x^{2} f^{\prime \prime}(x)+18 x f^{\prime}(x)+6 f(x)=0$ ．Therefore，

$$
f^{\prime \prime}(0)=-6 f(0)=-6
$$

Problem 3．（3pts）Find the derivative of the function $f(x)=\tan \left[x^{2} \sin ^{2}\left(x^{3}\right)\right]$ ．
Solution：By the chain rule，since $\frac{d}{d x} \tan x=\sec ^{2} x$ and $\frac{d}{d x} \sin ^{2} x=2 \sin x \cos x$,

$$
\begin{aligned}
\frac{d}{d x} f(x) & =\sec ^{2}\left[x^{2} \sin ^{2}\left(x^{3}\right)\right] \cdot \frac{d}{d x}\left[x^{2} \sin ^{2}\left(x^{3}\right)\right]=\sec ^{2}\left[x^{2} \sin ^{2}\left(x^{3}\right)\right] \cdot\left[2 x \sin ^{2}\left(x^{3}\right)+x^{2} \frac{d}{d x} \sin ^{2}\left(x^{3}\right)\right] \\
& =\sec ^{2}\left[x^{2} \sin ^{2}\left(x^{3}\right)\right]\left[2 x \sin ^{2}\left(x^{3}\right)+2 x^{2} \sin \left(x^{3}\right) \cos \left(x^{3}\right) \frac{d}{d x} x^{3}\right] \\
& =\sec ^{2}\left[x^{2} \sin ^{2}\left(x^{3}\right)\right]\left[2 x \sin ^{2}\left(x^{3}\right)+6 x^{4} \sin \left(x^{3}\right) \cos \left(x^{3}\right)\right] .
\end{aligned}
$$

