Calculus MA1001－A Quiz 04

National Central University，Oct． 112018

學號： \qquad姓名： \qquad
Problem 1．（4pts）State the intermediate value theorem．

Problem 2．（3pts）Suppose that you know that the function $y=2^{x}$ is continuous on $\mathbb{R}, 2^{a}>2^{b}$ for all $a>b$ ，and the two limits $\lim _{x \rightarrow \infty} 2^{x}=\infty, \lim _{x \rightarrow-\infty} 2^{x}=0$ ．Find all the asymptotes of the graph of the function

$$
f(x)=\frac{2^{x}+2^{-x}}{2^{x}-2^{-x}}
$$

Solution：First we find the vertical asymptote．Solving for $2^{x}-2^{-x}=0$ ，we find that $x=0$ ；thus $x=0$ is the only vertical asymptote．

For the horizontal asymptote，we note that if $x \neq 0$ ，

$$
f(x)=\frac{1+2^{-2 x}}{1-2^{-2 x}}=\frac{1+\left(2^{-x}\right)^{2}}{1-\left(2^{-x}\right)^{2}} \quad \text { and } \quad f(x)=\frac{2^{2 x}+1}{2^{2 x}-1}=\frac{\left(2^{x}\right)^{2}+1}{\left(2^{x}\right)^{2}-1} .
$$

Since $\lim _{x \rightarrow \infty}\left[1+\left(2^{-x}\right)^{2}\right]=1 ; \lim _{x \rightarrow \infty}\left[1-\left(2^{-x}\right)^{2}\right]=1 ; \lim _{x \rightarrow-\infty}\left[\left(2^{x}\right)^{2}+1\right]=1$ and $\lim _{x \rightarrow-\infty}\left[\left(2^{x}\right)^{2}-1\right]=-1$ ， we find that

$$
\lim _{x \rightarrow \infty} f(x)=\frac{\lim _{x \rightarrow \infty}\left[1+\left(2^{-x}\right)^{2}\right]}{\lim _{x \rightarrow \infty}\left[1-\left(2^{-x}\right)^{2}\right]}=\frac{1}{1}=1
$$

and

$$
\lim _{x \rightarrow-\infty} f(x)=\frac{\lim _{x \rightarrow-\infty}\left[\left(2^{x}\right)^{2}+1\right]}{\lim _{x \rightarrow \infty}\left[\left(2^{x}\right)^{2}-1\right]}=\frac{1}{-1}=-1
$$

Therefore，there are two horizontal asymptotes：$y= \pm 1$ ．
Problem 3．（3pts）Find the tangent lines of the graph of the function $y=x^{2}$ that passes through the point $(1,-3)$ ．

Solution：Suppose that a tangent line passes through point $\left(a, a^{2}\right)$ ．Then the slope of this tangent line is $2 a$ so that the tangent line is

$$
y=2 a(x-a)+a^{2} .
$$

Since this line passes through $(1,-3)$ ，we must have $-3=2 a(1-a)+a^{2}$ ；thus $a^{2}-2 a-3=0$ which shows $a=3$ or $a=-1$ ．Therefore，the tangent lines passing through $(1,-3)$ are

$$
y=6(x-3)+9=6 x-9 \quad \text { and } \quad y=-2(x+1)+1=-2 x-1 .
$$

