Calculus MA1001－A Quiz 03

National Central University，Oct． 042018

學號： \qquad姓名： \qquad

Problem 1．（3pts）Let $f:(a, b) \rightarrow \mathbb{R}$ be a real－value function and $a<c<b$ ．Write down the definition of the continuity of f at c ．

Problem 2．（3pts）For what values of a and b is

$$
g(x)=\left\{\begin{array}{cl}
a x+2 b & \text { if } x \leqslant 0 \\
x^{2}+3 a-b & \text { if } 0<x \leqslant 2 \\
3 x-5 & \text { if } x>2
\end{array}\right.
$$

continuous at every x ？
Solution：For g to be continuous at every point，we need to find a and b so that $\lim _{x \rightarrow c} g(x)=g(c)$ ． Since all the polynomials are continuous function，we find that

$$
\lim _{x \rightarrow c} g(x)=g(c) \text { if } c \neq 0,2
$$

Now，note that $\lim _{x \rightarrow 0^{-}} g(x)=a \cdot 0+2 b=2 b ; \lim _{x \rightarrow 0^{+}} g(x)=0^{2}+3 a-b=3 a-b ; \lim _{x \rightarrow 2^{-}} g(x)=2^{2}+3 a-b=$ $3 a-b+4$ and $\lim _{x \rightarrow 2^{+}}^{x \rightarrow 0} g(x)=3 \cdot 2-5=1$ ．For g to be continuous at $x=0$ and $x=2$ ，we must have

$$
\lim _{x \rightarrow 0^{-}} g(x)=\lim _{x \rightarrow 0^{+}} g(x) \quad \text { and } \quad \lim _{x \rightarrow 2^{-}} g(x)=\lim _{x \rightarrow 2^{+}} g(x) ;
$$

thus

$$
2 b=3 a-b \quad \text { and } \quad 3 a-b+4=1
$$

Solving for (a, b) from equations above，we find that $a=b=-\frac{3}{2}$ ．
Problem 3．（4pts）Let $f:[0,2] \rightarrow \mathbb{R}$ be function defined by

$$
f(x)=\text { the integer which is nearest to } x
$$

Find all the discontinuities of f ．Are they removable or non－removable discontinuities？

