Calculus II Midterm 1

National Central University, Summer Session 2012, Aug. 14, 2012
Problem 1. Let C_{1} be the polar graph of the polar function $r=1+\cos \theta$, and C_{2} be the polar graph of the polar function $r=3 \cos \theta$ (see figure 1).

Figure 1

1. (10%) Find the intersection points of C_{1} and C_{2}.
2. (10\%) Find the line L passing through the lowest intersection point and tangent to the curve C_{2}.
3. (5\%) Identify the curve marked by \star on the $\theta-r$ plane for $0 \leq \theta \leq 2 \pi$.
4. (10%) Find the area of the shaded region.

Sol:

1. Let $1+\cos \theta=3 \cos \theta$. Then $2 \cos \theta=1$ or $\theta=\frac{\pi}{3}, \frac{5 \pi}{3}$. From the figure, it is also clear that C_{1} and C_{2} intersection at the origin. Therefore, the points of intersections are

$$
\left(\frac{3}{4}, \frac{3 \sqrt{3}}{4}\right), \quad\left(\frac{3}{4},-\frac{3 \sqrt{3}}{4}\right), \quad(0,0)
$$

2. C_{2} can be parametrized by $\left\{(x, y) \in \mathbb{R}^{2} \mid x=3 \cos ^{2} \theta, y=3 \cos \theta \sin \theta\right\}$. Therefore,

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{-3 \sin ^{2} \theta+3 \cos ^{2} \theta}{-6 \cos \theta \sin \theta}=\frac{\sin ^{2} \theta-\cos ^{2} \theta}{2 \cos \theta \sin \theta}
$$

thus at the lowest point of intersection $\left(\theta=\frac{5 \pi}{3}\right), \frac{d y}{d x}=-\frac{1}{\sqrt{3}}$. As a consequence, the desired tangent line is

$$
y=-\frac{1}{\sqrt{3}}\left(x-\frac{3}{4}\right)-\frac{3 \sqrt{3}}{4}=-\frac{x}{\sqrt{3}}-\frac{\sqrt{3}}{2} .
$$

3. The curve marked by \star is in the fourth quadrant, on the circle $r=3 \cos \theta$ with end-points $(0,0)$ and $\left(\frac{3}{4},-\frac{3 \sqrt{3}}{4}\right)$. Therefore, it corresponds to the curves marked by \star is shown in Figure 2.

Figure 2
4. The shaded region on $x y$-plane corresponds to the shaded region in Figure 2. Therefore, the area of the shaded region (on $x y$-plane) is

$$
\begin{gathered}
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\left[(1+\cos \theta)^{2}-9 \cos ^{2} \theta\right] d \theta=\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}[1+2 \cos \theta-4(1+\cos 2 \theta)] d \theta \\
=\left.[-3 \theta+2 \sin \theta-2 \sin 2 \theta]\right|_{\theta=\frac{\pi}{3}} ^{\theta=\frac{\pi}{2}}=2-\frac{\pi}{2}
\end{gathered}
$$

Problem 2. (15\%) Show that the sequence $\left\{\left(1+\frac{1}{n}\right)^{n+\frac{1}{2}}\right\}_{n=1}^{\infty}$ is a decreasing sequence.
Proof. Let $f(x)=\left(1+\frac{1}{x}\right)^{x+\frac{1}{2}}$. Then $f(x)=\exp \left(\left(x+\frac{1}{2}\right) \ln \left(1+\frac{1}{x}\right)\right)$; thus

$$
\begin{aligned}
f^{\prime}(x) & =\left(1+\frac{1}{x}\right)^{x+\frac{1}{2}}\left[\ln \left(1+\frac{1}{x}\right)+\left(x+\frac{1}{2}\right) \frac{1}{1+\frac{1}{x}} \frac{-1}{x^{2}}\right] \\
& =\left(1+\frac{1}{x}\right)^{x+\frac{1}{2}}\left[\ln \left(1+\frac{1}{x}\right)-\left(\frac{x}{2}+\frac{x+1}{2}\right) \frac{1}{x(x+1)}\right] \\
& =\left(1+\frac{1}{x}\right)^{x+\frac{1}{2}}\left[\ln \left(1+\frac{1}{x}\right)-\frac{1}{2(x+1)}-\frac{1}{2 x}\right] .
\end{aligned}
$$

It suffices to show that $g(x) \equiv \ln \left(1+\frac{1}{x}\right)-\frac{1}{2(x+1)}-\frac{1}{2 x}$ is non-positive. Nevertheless,

$$
\begin{aligned}
g^{\prime}(x) & =-\frac{1}{x(x+1)}+\frac{1}{2(x+1)^{2}}+\frac{1}{2 x^{2}} \\
& =\frac{x^{2}+(x+1)^{2}-2 x(x+1)}{2 x^{2}(x+1)^{2}}=\frac{1}{2 x^{2}(x+1)^{2}}>0 ;
\end{aligned}
$$

thus g is increasing. Moreover, $\lim _{x \rightarrow \infty} g(x)=0$; thus $g(x)<0$ for all $x>1$.

Problem 3.

1. (10%) Find all the values of p for which the series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(\ln n)^{p}}{n}$ is convergent.
2. (10\%) Find all the positive integers k for which the series $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(k n)!}$ is convergent.

Sol:

1. Since the series is an alternating series. It converges if $p_{n}=\frac{(\ln n)^{p}}{n}$ is decreasing and approaches 0 as $n \rightarrow \infty$. Nevertheless, if $p<k \in \mathbb{N}$, by L'Hospital's rule,

$$
\lim _{x \rightarrow \infty} \frac{(\ln x)^{p}}{x}=\lim _{x \rightarrow \infty} \frac{p(\ln x)^{p-1}}{x}=p(p-1) \cdots(p-k+1) \lim _{x \rightarrow \infty} \frac{(\ln x)^{p-k}}{x}=0 .
$$

Moreover, let $f(x)=\frac{(\ln x)^{p}}{x}$. Then

$$
f^{\prime}(x)=\frac{p(\ln x)^{p-1}-(\ln x)^{p}}{x^{2}}=\frac{(\ln x)^{p-1}}{x^{2}}(p-\ln x)
$$

which implies that $f^{\prime}<0$ if $x \gg 1$. Therefore, the series is convergent for all $p \in \mathbb{R}$.
2. Let $a_{n}=\frac{(n!)^{2}}{(k n)!}$. Then $a_{n} \geq 0$.
(a) The case $k=1$. In this case $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$ if $k=1$. So the series is divergent if $k=1$.
(b) If $k \geq 2$,

$$
\frac{a_{n+1}}{a_{n}}=\frac{(n+1)^{2}(k n)!}{(k(n+1))!} \geq \frac{(n+1)^{2}(k n)!}{[k(n+1)][k(n+1)-1][k(n+1)-2](k n)!}
$$

thus $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=0$. Therefore, the series is convergent (for $k \geq 2$) by the ratio test.
Problem 4. (10\%) Test the series $\sum_{n=2}^{\infty}(\sqrt[n]{2}-1)$ for convergence or divergence.
Sol:
Method 1: Let $a_{n}=\sqrt[n]{2}-1 . b_{n}=\frac{1}{n}$. Then

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{2^{1 / n}-1}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{-2^{1 / n} \ln 2 \frac{1}{n^{2}}}{-\frac{1}{n^{2}}}=\ln 2 .
$$

Therefore, by the limit comparison test, $\sum_{n=2}^{\infty} a_{n}$ and $\sum_{n=2}^{\infty} b_{n}$ converges or diverges together. On the other hand, the harmonic series $\sum_{n=2}^{\infty} b_{n}$ diverges; thus $\sum_{n=2}^{\infty}(\sqrt[n]{2}-1)$ diverges.

Method 2: It is clear that the sequence $a_{n}=\sqrt[n]{2}-1$ is decreasing to 0 . By the integral test, the series is convergent if and only if the integral $\int_{1}^{\infty}\left(2^{1 / x}-1\right) d x$ is finite. Let $y=2^{1 / x}-1$. Then $x=\frac{1}{\ln (y+1)} ;$ thus $d x=\frac{-d y}{(y+1)(\ln (y+1))^{2}}$

$$
\int_{1}^{\infty}\left(2^{1 / x}-1\right) d x=\int_{0}^{1} \frac{y d y}{(y+1)[\ln (y+1)]^{2}} \stackrel{(y+1=z)}{=} \int_{1}^{2} \frac{(z-1) d z}{z(\ln z)^{2}} \stackrel{\left(z=e^{t}\right)}{=} \int_{0}^{\ln 2} \frac{e^{t}-1}{t^{2}} d t
$$

Since $e^{t} \geq 1+t$ if $t>0$ (by the Taylor series),

$$
\int_{1}^{\infty}\left(2^{1 / x}-1\right) d x \geq \int_{0}^{\ln 2} \frac{d t}{t}=\infty
$$

thus the series $\sum_{n=2}^{\infty}(\sqrt[n]{2}-1)$ is divergent.
Problem 5. (10\%) Find the radius of convergence and the interval of convergence of the power series

$$
\sum_{n=2}^{\infty} \frac{x^{2 n}}{n(\ln n)^{2}}
$$

Sol: Let $a_{n}=\frac{x^{2 n}}{n(\ln n)^{2}}$. Then $a_{n} \geq 0$, and

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{n(\ln n)^{2} x^{2}}{(n+1)[\ln (n+1)]^{2}}=\left[\lim _{n \rightarrow \infty} \frac{\ln n}{\ln (n+1)}\right]^{2} x^{2}=x^{2}
$$

thus the series $\sum_{n=2}^{\infty} \frac{x^{2 n}}{n(\ln n)^{2}}$ is convergent if $x^{2}<1$ and divergent if $x^{2}>1$. Therefore, the radius of convergence is $R=1$.

As for the interval of convergence, we check if the series converges at $x= \pm 1$. Nevertheless, since

$$
\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} d x=\int_{\ln 2}^{\infty} \frac{e^{t}}{e^{t} t^{2}} d t=\int_{\ln 2}^{\infty} \frac{1}{t^{2}} d t<\infty
$$

thus the series $\sum_{n=2}^{\infty} \frac{x^{2 n}}{n(\ln n)^{2}}$ converges at $x= \pm 1$. Therefore, the interval of convergence if $[-1,1]$.
Problem 6. (10\%) Let $f^{(k)}$ denote $\frac{d^{k} f}{d x^{k}}$, the k-th derivative of f, and $f^{(0)} \equiv f$. Suppose that $f^{(k)}$ is continuous for all $k \in \mathbb{N} \cup\{0\}$. Show that

$$
\begin{equation*}
f(x)=f(a)+f^{\prime}(a)(x-a)+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+(-1)^{n} \int_{a}^{x} \frac{(t-x)^{n}}{n!} f^{(n+1)}(t) d t \tag{0.1}
\end{equation*}
$$

by the integration by parts formula and induction.

Proof. By the fundamental theorem of Calculus and integration by parts,

$$
\begin{aligned}
f(x) & =f(a)+\int_{a}^{x} f^{\prime}(t) d t=f(a)+\left.(t-x) f^{\prime}(t)\right|_{t=a} ^{t=x}-\int_{a}^{x}(t-x) f^{\prime \prime}(t) d t \\
& =f(a)+f^{\prime}(a)(x-a)-\int_{a}^{x}(t-x) f^{\prime \prime}(t) d t
\end{aligned}
$$

This prove the case $n=1$.
Integrating by parts again suggests that

$$
\begin{aligned}
\int_{a}^{x} \frac{(t-x)^{N}}{N!} f^{(N+1)}(t) d t & =\left.\frac{(t-x)^{N+1}}{(N+1)!} f^{(N+1)}(t)\right|_{t=a} ^{t=x}-\int_{a}^{x} \frac{(t-x)^{N+1}}{(N+1)!} f^{(N+2)}(t) d t \\
& =(-1)^{N+2} \frac{f^{(N+1)}(a)}{(N+1)!}(x-a)^{N+1}-\int_{a}^{x} \frac{(t-x)^{N+1}}{(N+1)!} f^{(N+2)}(t) d t
\end{aligned}
$$

Now suppose that (0.1) holds for $n=N$. Then the identity above implies that

$$
\begin{aligned}
f(x)= & f(a)+f^{\prime}(a)(x-a)+\cdots+\frac{f^{(N)}(a)}{N!}(x-a)^{N}+(-1)^{N} \int_{a}^{x} \frac{(t-x)^{N}}{N!} f^{(N+1)}(t) d t \\
= & f(a)+f^{\prime}(a)(x-a)+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\frac{f^{(N+1)}(a)}{(N+1)!}(x-a)^{N+1} \\
& +(-1)^{N+1} \int_{a}^{x} \frac{(t-x)^{N+1}}{(N+1)!} f^{(N+2)}(t) d t .
\end{aligned}
$$

This implies that (0.1) also holds for $n=N+1$. Therefore, (0.1) holds for all $n \in \mathbb{N} \cup\{0\}$ by induction.

