
Calculus II Midterm 1
National Central University, Summer Session 2012, Aug. 14, 2012

Problem 1. Let C1 be the polar graph of the polar function r = 1 + cos θ, and C2 be the polar

graph of the polar function r = 3 cos θ (see figure 1).
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Figure 1

1. (10%) Find the intersection points of C1 and C2.

2. (10%) Find the line L passing through the lowest intersection point and tangent to the curve

C2.

3. (5%) Identify the curve marked by ⋆ on the θ-r plane for 0 ≤ θ ≤ 2π.

4. (10%) Find the area of the shaded region.

Sol:

1. Let 1 + cos θ = 3 cos θ. Then 2 cos θ = 1 or θ =
π

3
,
5π

3
. From the figure, it is also clear that C1

and C2 intersection at the origin. Therefore, the points of intersections are(3
4
,
3
√
3

4

)
,

(3
4
,−3

√
3

4

)
, (0, 0).

2. C2 can be parametrized by
{
(x, y) ∈ R2

∣∣ x = 3 cos2 θ, y = 3 cos θ sin θ
}
. Therefore,

dy

dx
=

dy
dθ
dx
dθ

=
−3 sin2 θ + 3 cos2 θ

−6 cos θ sin θ
=

sin2 θ − cos2 θ

2 cos θ sin θ
;

thus at the lowest point of intersection
(
θ =

5π

3

)
,
dy

dx
= − 1√

3
. As a consequence, the desired

tangent line is

y = − 1√
3

(
x− 3

4

)
− 3

√
3

4
= − x√

3
−

√
3

2
.



3. The curve marked by ⋆ is in the fourth quadrant, on the circle r = 3 cos θ with end-points (0, 0)

and
(3
4
,−3

√
3

4

)
. Therefore, it corresponds to the curves marked by ⋆ is shown in Figure 2.
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Figure 2

4. The shaded region on xy-plane corresponds to the shaded region in Figure 2. Therefore, the

area of the shaded region (on xy-plane) is∫ π
2

π
3

[
(1 + cos θ)2 − 9 cos2 θ

]
dθ =

∫ π
2

π
3

[
1 + 2 cos θ − 4(1 + cos 2θ)

]
dθ

=
[
− 3θ + 2 sin θ − 2 sin 2θ

]∣∣∣θ=π
2

θ=π
3

= 2− π

2
.

Problem 2. (15%) Show that the sequence
{(

1 +
1

n

)n+ 1
2
}∞

n=1
is a decreasing sequence.

Proof. Let f(x) =
(
1 +

1

x

)x+ 1
2
. Then f(x) = exp

((
x+

1

2

)
ln
(
1 +

1

x

))
; thus

f ′(x) =
(
1 +

1

x

)x+ 1
2
[
ln
(
1 +

1

x

)
+
(
x+

1

2

) 1

1 + 1
x

−1

x2

]
=

(
1 +

1

x

)x+ 1
2
[
ln
(
1 +

1

x

)
−
(x
2
+

x+ 1

2

) 1

x(x+ 1)

]
=

(
1 +

1

x

)x+ 1
2
[
ln
(
1 +

1

x

)
− 1

2(x+ 1)
− 1

2x

]
.

It suffices to show that g(x) ≡ ln
(
1 +

1

x

)
− 1

2(x+ 1)
− 1

2x
is non-positive. Nevertheless,

g ′(x) = − 1

x(x+ 1)
+

1

2(x+ 1)2
+

1

2x2

=
x2 + (x+ 1)2 − 2x(x+ 1)

2x2(x+ 1)2
=

1

2x2(x+ 1)2
> 0;

thus g is increasing. Moreover, lim
x→∞

g(x) = 0; thus g(x) < 0 for all x > 1. �



Problem 3.

1. (10%) Find all the values of p for which the series
∞∑
n=1

(−1)n−1 (lnn)
p

n
is convergent.

2. (10%) Find all the positive integers k for which the series
∞∑
n=1

(n!)2

(kn)!
is convergent.

Sol:

1. Since the series is an alternating series. It converges if pn =
(lnn)p

n
is decreasing and approaches

0 as n → ∞. Nevertheless, if p < k ∈ N, by L’Hospital’s rule,

lim
x→∞

(lnx)p

x
= lim

x→∞

p(lnx)p−1

x
= p(p− 1) · · · (p− k + 1) lim

x→∞

(lnx)p−k

x
= 0.

Moreover, let f(x) =
(lnx)p

x
. Then

f ′(x) =
p(lnx)p−1 − (lnx)p

x2
=

(lnx)p−1

x2
(p− lnx)

which implies that f ′ < 0 if x ≫ 1. Therefore, the series is convergent for all p ∈ R.

2. Let an =
(n!)2

(kn)!
. Then an ≥ 0.

(a) The case k = 1. In this case an → ∞ as n → ∞ if k = 1. So the series is divergent if

k = 1.

(b) If k ≥ 2,

an+1

an
=

(n+ 1)2(kn)!

(k(n+ 1))!
≥ (n+ 1)2(kn)!

[k(n+ 1)][k(n+ 1)− 1][k(n+ 1)− 2](kn)!
;

thus lim
n→∞

an+1

an
= 0. Therefore, the series is convergent (for k ≥ 2) by the ratio test. �

Problem 4. (10%) Test the series
∞∑
n=2

(
n
√
2− 1) for convergence or divergence.

Sol:

Method 1: Let an =
n
√
2− 1. bn =

1

n
. Then

lim
n→∞

an
bn

= lim
n→∞

21/n − 1
1
n

= lim
n→∞

−21/n ln 2 1
n2

− 1
n2

= ln 2.

Therefore, by the limit comparison test,
∞∑
n=2

an and
∞∑
n=2

bn converges or diverges together. On the

other hand, the harmonic series
∞∑
n=2

bn diverges; thus
∞∑
n=2

( n
√
2− 1) diverges.



Method 2: It is clear that the sequence an = n
√
2 − 1 is decreasing to 0. By the integral test, the

series is convergent if and only if the integral

∫ ∞

1

(21/x − 1)dx is finite. Let y = 21/x − 1. Then

x =
1

ln(y + 1)
; thus dx =

−dy

(y + 1)(ln(y + 1))2∫ ∞

1

(21/x − 1)dx =

∫ 1

0

ydy

(y + 1)[ln(y + 1)]2
(y+1=z)
=

∫ 2

1

(z − 1)dz

z(ln z)2
(z=et)
=

∫ ln 2

0

et − 1

t2
dt.

Since et ≥ 1 + t if t > 0 (by the Taylor series),∫ ∞

1

(21/x − 1)dx ≥
∫ ln 2

0

dt

t
= ∞;

thus the series
∞∑
n=2

(
n
√
2− 1) is divergent. �

Problem 5. (10%) Find the radius of convergence and the interval of convergence of the power

series

∞∑
n=2

x2n

n(lnn)2
.

Sol: Let an =
x2n

n(lnn)2
. Then an ≥ 0, and

lim
n→∞

an+1

an
= lim

n→∞

n(lnn)2x2

(n+ 1)[ln(n+ 1)]2
=

[
lim
n→∞

lnn

ln(n+ 1)

]2
x2 = x2;

thus the series
∞∑
n=2

x2n

n(lnn)2
is convergent if x2 < 1 and divergent if x2 > 1. Therefore, the radius of

convergence is R = 1.

As for the interval of convergence, we check if the series converges at x = ±1. Nevertheless, since∫ ∞

2

1

x(lnx)2
dx =

∫ ∞

ln 2

et

ett2
dt =

∫ ∞

ln 2

1

t2
dt < ∞;

thus the series
∞∑
n=2

x2n

n(lnn)2
converges at x = ±1. Therefore, the interval of convergence if [−1, 1]. �

Problem 6. (10%) Let f (k) denote
dkf

dxk
, the k-th derivative of f , and f (0) ≡ f . Suppose that f (k) is

continuous for all k ∈ N ∪ {0}. Show that

f(x) = f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n + (−1)n

∫ x

a

(t− x)n

n!
f (n+1)(t) dt (0.1)

by the integration by parts formula and induction.



Proof. By the fundamental theorem of Calculus and integration by parts,

f(x) = f(a) +

∫ x

a

f ′(t)dt = f(a) + (t− x)f ′(t)
∣∣∣t=x

t=a
−

∫ x

a

(t− x)f ′′(t)dt

= f(a) + f ′(a)(x− a)−
∫ x

a

(t− x)f ′′(t)dt.

This prove the case n = 1.

Integrating by parts again suggests that∫ x

a

(t− x)N

N !
f (N+1)(t)dt =

(t− x)N+1

(N + 1)!
f (N+1)(t)

∣∣∣t=x

t=a
−

∫ x

a

(t− x)N+1

(N + 1)!
f (N+2)(t)dt

= (−1)N+2f
(N+1)(a)

(N + 1)!
(x− a)N+1 −

∫ x

a

(t− x)N+1

(N + 1)!
f (N+2)(t)dt.

Now suppose that (0.1) holds for n = N . Then the identity above implies that

f(x) = f(a) + f ′(a)(x− a) + · · ·+ f (N)(a)

N !
(x− a)N + (−1)N

∫ x

a

(t− x)N

N !
f (N+1)(t) dt

= f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n +

f (N+1)(a)

(N + 1)!
(x− a)N+1

+ (−1)N+1

∫ x

a

(t− x)N+1

(N + 1)!
f (N+2)(t)dt.

This implies that (0.1) also holds for n = N + 1. Therefore, (0.1) holds for all n ∈ N ∪ {0} by

induction. �


