Calculus II Midterm 3
National Central University, Spring 2012, June 01, 2012
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Problem 1. Evaluate the double integral / / 32%dydz in the following way:
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1. (8%) Directly integrate by computing the iterated integral (You will need to integrate by parts

to obtain the integral in z).
2. (4%) Sketch the region of integration.
3. (8%) Interchange the order of integration, and evaluate the double integral again.
Sol:

1. Integrating in y first:
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Let u = Inz and dv = 322. Then du = —dx and v = 2*. Integrating by parts,
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2. Since 1 <z <2,0 <y <Inz, the region is
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3. y = Inx if and only if x = €Y. Therefore,
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Problem 2. Let D be the intersection of two solid cylinders 2% + y? < 1 and 22 + 22 < 1.

1. (10%) Using the cylindrical coordinate to describe the region D. In other words, find the
corresponding domain of D in the (7,0, z) space (Suppose D is the same as a < r < b,
a<60<p,and Fi(r,0) < z < Fy(r,0), find a, b, a, B as well as Fy, F5).



2. (15%) Find the volume of D, or / / / dV, using the cylindrical coordinate.
D

Sol:
1. Wehavea=0,b=1,a =0, § =2, and Fi(r,0) = —v1 — r2cos? 0, F5(r,0) = v/1 — r2cos? 0,

that is,

D= {(r,@,z) (r,0) € [0,1] x [0,27], —vV1 —r2cos? 0 < z < V1 — r2cos? 6’}.

2. The volume of D can be computed by
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Problem 3. (15%) Use spherical coordinates to evaluate

I,z

where the region D in the three dimensional space with coordinate (z,y,z) is described by the

inequalities

2+t 4 22 < Va4 2, z22>0

Sol: In spherical coordinate, the region D is bounded by p? < v/p?sin? ¢ = psin ¢ (or p < sin ¢) and
pcosd >0 (or 0 < ¢ < 7/2). Therefore, using the spherical coordinate,
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Problem 4. Let R be the region in the first quadrant bounded by the lines y = 3z, y = v/3 and the
hyperbola xy = 3 (see the figure for reference).

Compute the double integral / / xy dA in the following way:
R



Sol:
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(5%) Let x = u/v and y = v. Find the Jacobian ggz:z%

(5%) Sketch the region R in uv plane so that every point in R corresponds to a unique point

in R. In other words, find the corresponding integral domain in the uv plane.

(10%) Convert the double integral to an integral in the uv coordinate and then compute the

double integral.

. By definition of the Jacobian,
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The line y = /3 corresponds to the line v = v/3 in wv plane, while the hyperbola zy = 3

corresponds to the line u = 3. Moreover, the line y = 3x corresponds to the curve v = 3u/v or

1 -
u = gvz. Therefore, the region R on the uv plane is the region enclosed by v = v/3, u = 3 and
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the parabola u = §U2 that is plotted as follows:
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3. By the change of variable formula,
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Problem 5. Let C' be a smooth curve parametrized by

=

(t) = (costsint,sintsint, cost), -
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(See the figure for reference).

The curve C' divides the unit sphere into two parts, and let > be the smaller part. Find the surface

area of ¥ by completing the following:

1. (5%) Projecting X onto the zy plane, and called the projection R. Then ¥ is the corresponding

surface over R; that is,

Y= {(:E,y,z) GR?"z: VI1—a2—y% (z,y) ER}.

Show that if (x,y) is on the boundary of R, then (z,y) satisfies

2 +y?—y=0.

2. (15%) Find the surface area of ¥ by computing // ds.
R
Sol:

1. Assume that (x,y) = (costsint,sintsint) is on the boundary of R. Then
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2?4y =sin’t = or (2* +yH) =19y

Since y > 0, we find that 22 + ¢y = y.



2. The surface area of ¥ can be computed by
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