Calculus II Midterm 3 Sample

National Central University, Spring 2012, May 27, 2012
Problem 1. Evaluate the double integral $\int_{0}^{1} \int_{e^{x}}^{e} e^{x} d y d x$ in the following way:

1. Directly integrate by computing the iterated integral.
2. Sketch the region of integration.
3. Interchange the order of integration, and evaluate the double integral again.

Problem 2. A torus \mathbb{T}^{2} is obtained by rotating the circle $(x-2)^{2}+z^{2}=1$ (in the $x z$ plane) about the z-axis.

1. Express the torus in the cylindrical coordinate. In other words, write down the relations between r, θ and z if $(x, y, z)=(r \cos \theta, r \sin \theta, z)$ is on the torus.
2. Let D be the solid region bounded by \mathbb{T}^{2}. Find the corresponding domain of D in the (r, θ, z) space (Suppose D is the same as $a \leq r \leq b, \alpha \leq \theta \leq \beta$, and $F_{1}(r, \theta) \leq z \leq F_{2}(r, \theta)$, find a, b, α, β as well as F_{1}, F_{2}).
3. Find the volume of D, or $\iiint_{D} d V$, using the cylindrical coordinate.

Problem 3. Use spherical coordinates to evaluate

$$
\iiint_{D} \sqrt{x^{2}+y^{2}+z^{2}} d V
$$

where the region D in the three dimensional space with coordinate (x, y, z) is described by the inequalities

$$
x^{2}+y^{2}+z^{2} \leq z, \quad z \geq 0, \quad y \geq 0 .
$$

Problem 4. Let R be the region in the first quadrant bounded by curves $x y-x+y=0$ and $x-y=1$ (see the figure for reference).

Compute the double integral $\iint_{R} x^{2} y^{2}(x+y) e^{-(x-y)^{2}} d A$ in the following way:

1. Let $u=x y$ and $v=x-y$. Find the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$.
2. Sketch the region \widetilde{R} in uv plane so that every point in R corresponds to a unique point in \widetilde{R}. In other words, find the corresponding integral domain in the $u v$ plane.
3. Convert the double integral to an integral in the $u v$ coordinate and then compute the double integral.

Problem 5. Let C be a smooth curve parametrized by

$$
\stackrel{\rightharpoonup}{r}(t)=(\cos t \sin t, \cos t, \sin t \sin t), \quad-\frac{\pi}{2} \leq t \leq \frac{\pi}{2} .
$$

(See the figure for reference).

The curve C divides the unit sphere into two parts, and let Σ be the smaller part. Find the surface area of Σ by completing the following:

1. Projecting Σ onto the $x y$ plane, and called the projection R. Then Σ is the corresponding surface over R; that is,

$$
\Sigma=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=\sqrt{1-x^{2}-y^{2}},(x, y) \in R\right\} .
$$

Show that if (x, y) is on the boundary of R, then (x, y) satisfies

$$
x^{2}-y^{2}+y^{4}=0 .
$$

2. Find the surface area of Σ by computing $\iint_{R} d S$.
