Calculus II Midterm 1 - Sample

National Central University, Summer 2012, Mar. 31, 2012

Problem 1. Evaluate the definite integral $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{3+2\cos 4x} dx$. $\left(\operatorname{Ans} = \frac{\pi}{2\sqrt{5}}\right)$

Problem 2. Find all $\alpha \in \mathbb{R}$ so that the improper integral $\int_{1}^{\infty} \frac{1}{x [\ln(1+x)]^{\alpha}} dx$ is convergent. (Ans : $\alpha > 1$)

Problem 3. Show that $\int_{1}^{e} (\ln x)^n dx = e \sum_{k=0}^{n-2} (-1)^k \frac{n!}{(n-k)!} + (-1)^{n-1} n!$. **Hint**: Use integration by parts to show that

$$\int_{1}^{e} (\ln x)^{n} dx = e - n \int_{1}^{e} (\ln x)^{n-1} dx.$$

Problem 4. Let R be the region bounded by the lemniscate $r^2 = 2\cos 2\theta$ and is outside the circle r = 1 (see the shaded region in the graph).

- 1. Find the area of R. $\left(Ans = \sqrt{3} \frac{\pi}{3}\right)$
- 2. Find the slope of the tangent line passing thought the point on the lemniscate corresponding to $\theta = \frac{\pi}{6}$. (Ans = 0)
- 3. Find the volume of the solid of revolution obtained by rotating R about the x-axis by complete the following:
 - (a) Suppose that (x, y) is on the lemniscate. Then (x, y) satisfies

$$y^4 + a(x)y^2 + b(x) = 0$$
(1)

for some functions a(x) and b(x). Find a(x) and b(x). (Ans : $a(x) = 2(x^2 + 1), b(x) = x^4 - 2x^2$)

(b) Solving (1), we find that $y^2 = c(x)$, where $c(x) = c_1 x^2 + c_2 + c_3 \sqrt{1 + 4x^2}$ for some constants c_1, c_2 and c_3 . Then the volume of interests can be computed by

$$I = 2 \times \left[\pi \int_{\frac{\sqrt{3}}{2}}^{\sqrt{2}} c(x) dx - \pi \int_{\frac{\sqrt{3}}{2}}^{1} d(x) dx \right]$$

Compute $\int_{\frac{\sqrt{3}}{2}}^{1} \left[d(x) - (1 - x^2) \right] dx.$ (Ans = 0)

(c) Evaluate I by first computing the integral $\int_{\frac{\sqrt{3}}{2}}^{\sqrt{2}} \sqrt{1+4x^2} dx$, and then find I. $\left(\int_{\sqrt{3}}^{\sqrt{2}} \sqrt{1+4x^2} dx = \pi \left(\frac{3\sqrt{2}}{2} - \frac{\sqrt{3}}{2} + \frac{1}{4} \ln \frac{3+2\sqrt{2}}{2+\sqrt{3}}\right),\right)$

$$\left(Ans: \int_{\frac{\sqrt{3}}{2}}^{\sqrt{2}} \sqrt{1+4x^2} dx = \pi \left(\frac{3\sqrt{2}}{2} - \frac{\sqrt{3}}{2} + \frac{1}{4} \ln \frac{3+2\sqrt{2}}{2+\sqrt{3}} \right), \\ I = \pi \left(\frac{1}{2} \ln \frac{3+2\sqrt{2}}{2+\sqrt{3}} + \sqrt{3} - \frac{\sqrt{2}}{3} - \frac{4}{3} \right).$$

4. Find the surface area of the surface of revolution obtained by rotating the boundary of R about the x-axis. $\left(Ans = 6\pi \left(2 - \sqrt{3}\right)\right)$

Problem 5. (15%) Parametrize the curve

$$\mathbf{r} = \mathbf{r}(t) = \tan^{-1} \frac{t}{\sqrt{1-t^2}} \mathbf{i} + \sin^{-1} t \mathbf{j} + \cos^{-1} t \mathbf{k}, \quad t \in \left[-1, 0.5\right],$$

in the same orientation in terms of arc-length measured from the point where t = 0.

$$\left(\operatorname{Ans}:\mathbf{r}_{1}=\mathbf{r}_{1}(s)=\frac{s}{\sqrt{3}}\mathbf{i}+\frac{s}{\sqrt{3}}\mathbf{j}+\left(\frac{\pi}{2}-\frac{s}{\sqrt{3}}\right)\mathbf{k},\quad s\in\left[-\frac{\sqrt{3\pi}}{2},\frac{\sqrt{3\pi}}{6}\right]\right)$$