Calculus II Midterm 1 - Sample

National Central University, Summer 2012, Mar. 31, 2012
Problem 1. Evaluate the definite integral $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{3+2 \cos 4 x} d x . \quad\left(\right.$ Ans $\left.=\frac{\pi}{2 \sqrt{5}}\right)$
Problem 2. Find all $\alpha \in \mathbb{R}$ so that the improper integral $\int_{1}^{\infty} \frac{1}{x[\ln (1+x)]^{\alpha}} d x$ is convergent. (Ans: $\alpha>1$)

Problem 3. Show that $\int_{1}^{e}(\ln x)^{n} d x=e \sum_{k=0}^{n-2}(-1)^{k} \frac{n!}{(n-k)!}+(-1)^{n-1} n!$.
Hint: Use integration by parts to show that

$$
\int_{1}^{e}(\ln x)^{n} d x=e-n \int_{1}^{e}(\ln x)^{n-1} d x .
$$

Problem 4. Let R be the region bounded by the lemniscate $r^{2}=2 \cos 2 \theta$ and is outside the circle $r=1$ (see the shaded region in the graph).

1. Find the area of R. $\left(\right.$ Ans $\left.=\sqrt{3}-\frac{\pi}{3}\right)$
2. Find the slope of the tangent line passing thought the point on the lemniscate corresponding to $\theta=\frac{\pi}{6} . \quad($ Ans $=0)$
3. Find the volume of the solid of revolution obtained by rotating R about the x-axis by complete the following:
(a) Suppose that (x, y) is on the lemniscate. Then (x, y) satisfies

$$
\begin{equation*}
y^{4}+a(x) y^{2}+b(x)=0 \tag{1}
\end{equation*}
$$

for some functions $a(x)$ and $b(x)$. Find $a(x)$ and $b(x)$. (Ans : $a(x)=2\left(x^{2}+1\right), b(x)=$ $\left.x^{4}-2 x^{2}\right)$
(b) Solving (1), we find that $y^{2}=c(x)$, where $c(x)=c_{1} x^{2}+c_{2}+c_{3} \sqrt{1+4 x^{2}}$ for some constants c_{1}, c_{2} and c_{3}. Then the volume of interests can be computed by

$$
I=2 \times\left[\pi \int_{\frac{\sqrt{3}}{2}}^{\sqrt{2}} c(x) d x-\pi \int_{\frac{\sqrt{3}}{2}}^{1} d(x) d x\right] .
$$

Compute $\int_{\frac{\sqrt{3}}{2}}^{1}\left[d(x)-\left(1-x^{2}\right)\right] d x . \quad($ Ans $=0)$
(c) Evaluate I by first computing the integral $\int_{\frac{\sqrt{3}}{2}}^{\sqrt{2}} \sqrt{1+4 x^{2}} d x$, and then find I.

$$
\binom{\quad \int_{\frac{\sqrt{3}}{2}}^{\sqrt{2}} \sqrt{1+4 x^{2}} d x=\pi\left(\frac{3 \sqrt{2}}{2}-\frac{\sqrt{3}}{2}+\frac{1}{4} \ln \frac{3+2 \sqrt{2}}{2+\sqrt{3}}\right),}{I=\pi\left(\frac{1}{2} \ln \frac{3+2 \sqrt{2}}{2+\sqrt{3}}+\sqrt{3}-\frac{\sqrt{2}}{3}-\frac{4}{3}\right) .}
$$

4. Find the surface area of the surface of revolution obtained by rotating the boundary of R about the x-axis. $($ Ans $=6 \pi(2-\sqrt{3}))$

Problem 5. (15\%) Parametrize the curve

$$
\mathbf{r}=\mathbf{r}(t)=\tan ^{-1} \frac{t}{\sqrt{1-t^{2}}} \mathbf{i}+\sin ^{-1} t \mathbf{j}+\cos ^{-1} t \mathbf{k}, \quad t \in[-1,0.5]
$$

in the same orientation in terms of arc-length measured from the point where $t=0$.

$$
\left(\text { Ans }: \mathbf{r}_{1}=\mathbf{r}_{1}(s)=\frac{s}{\sqrt{3}} \mathbf{i}+\frac{s}{\sqrt{3}} \mathbf{j}+\left(\frac{\pi}{2}-\frac{s}{\sqrt{3}}\right) \mathbf{k}, \quad s \in\left[-\frac{\sqrt{3} \pi}{2}, \frac{\sqrt{3} \pi}{6}\right]\right)
$$

