Calculus Review 2

National Central University, Spring semester 2012

Problem 1. Find $\frac{d}{dx} \int_{2^x}^{\cos^{-1} x} \ln(u^4 + 1) du$ for $x \in (-1, 1)$.

Problem 2. Find $\frac{d}{dx} \exp\left[\tan^{-1}\ln(x^2+1)\right]$. Note that $\exp(x) = e^x$.

Problem 3. Find $\lim_{x \to 1^-} \left(\cot \frac{\pi x}{2} \right)^{\left(\tan^{-1} x - \frac{\pi}{4} \right)}$.

Problem 4. Find the indefinite integral $\int x^2 \sin^{-1} x dx$. Verify your answer by differentiating the result you obtain.

Problem 5. Find the definite integral $\int_0^{\frac{1}{6}} \sec^4 x dx$. **Problem 6.** Find the indefinite integral $\int \cos^2 x dx$ using

- (1) The half angle formula $\cos^2 x = \frac{1 + \cos 2x}{2}$;
- (2) Using the technique of integration by parts with $u = \cos x$ and $dv = \cos x dx$;
- (3) Using the substitution of variable $t = \tan \frac{x}{2}$ and transform the original integral into the integral of a rational function, and use the technique of partial fractions.

Hint: For (3), you will need the recursive formula

$$\int \frac{1}{(1+x^2)^n} dx = \frac{x}{2(n-1)(x^2+1)^{n-1}} + \frac{2n-3}{2n-2} \int \frac{1}{(1+x^2)^{n-1}} dx \quad \forall n \ge 2.$$

Problem 7. The goal of this problem is to find the indefinite integral $\int \frac{1}{(1+x^3)^{\frac{1}{3}}} dx$. Complete the following.

(1) By the substitution of variable $1 + x^{-3} = u^3$, show that

$$\int \frac{1}{(1+x^3)^{\frac{1}{3}}} dx = -\int \frac{u}{u^3 - 1} du.$$

(2) Using the technique of integrating rational functions by partial fractions, find the indefinite integral in (1) and then express the result in terms of x so that one obtains

$$\int \frac{1}{(1+x^3)^{\frac{1}{3}}} dx = -\frac{1}{\sqrt{3}} \tan^{-1} \left[\frac{2(1+x^{-3})^{\frac{1}{3}}+1}{\sqrt{3}} \right] + \frac{1}{6} \ln \left[(1+x^{-3})^{\frac{2}{3}} + (1+x^{-3})^{\frac{1}{3}}+1 \right] \\ -\frac{1}{3} \ln \left| (1+x^{-3})^{\frac{1}{3}}-1 \right| + C.$$