Basic Mathematics（基礎數學）MA1015A Midterm Exam II

National Central University，May． 172019

系級： \qquad學號： \qquad姓名： \qquad

Problem 1．（10\％）Show that for each even natural number n ，

$$
\prod_{k=2}^{n}\left(1-\frac{(-1)^{k}}{k}\right)=\frac{1}{2}
$$

Proof．Let $S=\left\{n \in \mathbb{N} \left\lvert\, \prod_{k=2}^{2 n}\left(1-\frac{(-1)^{k}}{k}\right)=\frac{1}{2}\right.\right\}$ ．
1． $1 \in S$ since

$$
\prod_{k=2}^{2}\left(1-\frac{(-1)^{k}}{k}\right)=1-\frac{1}{2}=\frac{1}{2}
$$

2．Assume that $n \in S$ ．Then $\prod_{k=2}^{2 n}\left(1-\frac{(-1)^{k}}{k}\right)=\frac{1}{2}$ ；thus

$$
\begin{aligned}
\prod_{k=2}^{2(n+1)}\left(1-\frac{(-1)^{k}}{k}\right) & =\prod_{k=2}^{2 n}\left(1-\frac{(-1)^{k}}{k}\right) \cdot\left(1-\frac{(-1)^{2 n+1}}{2 n+1}\right) \cdot\left(1-\frac{(-1)^{2 n+2}}{2 n+2}\right) \\
& =\frac{1}{2} \cdot\left(1-\frac{-1}{2 n+1}\right) \cdot\left(1-\frac{1}{2 n+2}\right)=\frac{1}{2} \cdot \frac{2 n+2}{2 n+1} \cdot \frac{2 n+1}{2 n+2}=\frac{1}{2}
\end{aligned}
$$

Therefore，$n+1 \in S$ ．
By PMI，we conclude that $S=\mathbb{N}$ ．
Problem 2．（ 10% ）Let $a_{1}=a_{2}=1$ ，and for each natural number $n \geqslant 2$ ，let

$$
a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{2}{a_{n-1}}\right) .
$$

Show that for each natural number $n, 1 \leqslant a_{n} \leqslant 2$ ．
Proof．Let $S=\left\{n \in \mathbb{N} \mid 1 \leqslant a_{n} \leqslant 2\right.$ and $\left.1 \leqslant a_{n+1} \leqslant 2\right\}$ ．
1．Then by assumption， $1 \in S$ ．
2．Suppose that $\{1,2, \cdots, n-1\} \subseteq S$ ．Then $1 \leqslant a_{n-1}, a_{n} \leqslant 2$ ；thus

$$
a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{2}{a_{n-1}}\right) \geqslant \frac{1}{2}\left(1+\frac{2}{2}\right)=\frac{1}{2} \cdot 2=1
$$

and

$$
a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{2}{a_{n-1}}\right) \leqslant \frac{1}{2}\left(2+\frac{2}{1}\right)=\frac{1}{2} \cdot 4=2 .
$$

Therefore， $1 \leqslant a_{n+1} \leqslant 2$ ．Combining with $1 \leqslant a_{n} \leqslant 2$ ，we find that $n \in S$ ．

By PCI, we conclude that $S=\mathbb{N}$.
Problem 3. (10\%) Let A be a set, and R be a relation on A. Show that R is transitive if and only if $R \circ R \subseteq R$.

Proof. " \Rightarrow " Assume that R is transitive and $(a, c) \in R \circ R$ be given. By the definition of the composition of relations, there exists b in A such that $(a, b) \in R$ and $(b, c) \in R$. Since R is transitive, $(a, c) \in R$ which shows that $R \circ R \subseteq R$.
" \Leftarrow " Assume that $R \circ R \subseteq R$ and $(a, b),(b, c) \in R$. By the definition of the composition of relations, $(a, b) \in R \circ R$; thus by the assumption that $R \circ R \subseteq R$, we conclude that $(a, b) \in R$. Therefore, R is transitive.

Problem 4. (10\%) Let X be a non-empty set and A be a non-empty proper subset of X. Set $R=X \times X-(A \times A)$. Is R reflexive on X ? Symmetric? Transitive? Prove your answers.

Proof. 1. R is not reflexive on X since if $a \in A$, then $a \in X$ but the fact that $(a, a) \in A \times A$ implies that $(a, a) \notin R=X \times X-A \times A$.
2. R is symmetric on X : Let $(b, c) \in X \times X$. Then

$$
\begin{aligned}
(b, c) \in R & \Leftrightarrow(b, c) \notin A \times A \Leftrightarrow(b \notin A) \vee(c \notin A) \Leftrightarrow(c \notin A) \vee(b \notin A) \Leftrightarrow(c, b) \notin A \times A \\
& \Leftrightarrow(c, b) \in R .
\end{aligned}
$$

3. \underline{R} is not transitive on X : Let $a, b \in X$ but $a \in A$ and $b \notin A$. Then (by the argument above) $(a, b) \in R$ and $(b, a) \in R$. If R is transitive on X, we must have $(a, a) \in R$, a contradiction. \quad

Problem 5. (10\%) Let p be a prime number, and $a \in \mathbb{N}$. Show that $a^{2}=1(\bmod p)$ if and only if $a=1(\bmod p)$ or $a=-1(\bmod p)$.

Proof. " \Rightarrow " Suppose that $a^{2}=1(\bmod p)$. Then $p \mid\left(a^{2}-1\right)$. Since $a^{2}-1=(a-1)(a+1)$ and p is a prime number, $p \mid(a-1)$ or $p \mid(a+1)$. Therefore, $a=1(\bmod p)$ or $a=-1(\bmod p)$.
" \Leftarrow " If $a=1(\bmod p)$, then $a=k p+1$ for some $k \in \mathbb{Z}$; thus $a^{2}-1=k^{2} p^{2}+2 k p$ which implies that $p \mid a^{2}-1$. Therefore, $a=1(\bmod p)$ implies that $a^{2}=1(\bmod p)$. On the other hand, if $a=-1(\bmod p)$, then $a=k p-1$ for some $k \in \mathbb{Z}$; thus $a^{2}-1=k^{2} p^{2}-2 k p$ which implies that $p \mid a^{2}-1$. Therefore, $a=-1(\bmod p)$ implies that $a^{2}=1(\bmod p)$; thus $a=1(\bmod p)$ or $a=-1(\bmod p)$ implies that $a^{2}=1(\bmod p)$.

Problem 6. Prove the Fermat's Little Theorem

Let p be a prime, and let $a \in \mathbb{N}$ such that $p \nmid a$. Then $a^{p-1}=1(\bmod p)$
by the following steps.
(i) (5\%) Show that none of the $p-1$ integers $a, 2 a, 3 a, \cdots,(p-1) a$ is divisible by p.
(ii) (5\%) Show that no two of the integers $a, 2 a, 3 a, \cdots,(p-1) a$ are congruent modulu p.
(iii) (5%) Show that $\prod_{j=1}^{p-1}(j a)=(p-1)!(\bmod p)$.
(iv) (5%) Conclude from (iii) that $a^{p-1}=1(\bmod p)$.

Proof. (i) Assume the contrary that there exists an integer $1 \leqslant j \leqslant p-1$ such that $p \mid j a$. Then $p \mid j$ or $p \mid a$. By assumption, $p \nmid a$; thus $p \mid j$ which implies that p divides an integer between 1 and $p-1$, a contradiction. Therefore, none of the $p-1$ integers $a, 2 a, 3 a, \cdots,(p-1) a$ is divisible by p.
(ii) Assume the contrary that there exist $1 \leqslant j, k \leqslant p-1$ such that $j a=k a(\bmod p)$. Then $p \mid(j-k) a$ which implies that $p \mid j-k$ or $p \mid a$. By assumption, $p \nmid a$; thus $p \mid j-k$, a contradiction. Therefore, no two of the integers $a, 2 a, 3 a, \cdots,(p-1) a$ are congruent modulu p.
(iii) Let $0 \leqslant r_{j}<p$ be the remainder satisfying $j a=r_{j}(\bmod p)$. By (i), $r_{j} \neq 0$ for all $1 \leqslant j \leqslant p-1$. By (ii), $r_{j} \neq r_{k}$ if $j \neq k$ and $1 \leqslant j, k \leqslant p-1$. Therefore, $\left\{r_{1}, r_{2}, \cdots, r_{p-1}\right\}$ is a permutation of $\{1,2, \cdots, n\}$ which implies that

$$
\begin{equation*}
\prod_{j=1}^{p-1} r_{j}=(p-1)! \tag{*}
\end{equation*}
$$

Since $j a=r_{j}(\bmod p)$, we conclude that

$$
\prod_{j=1}^{p-1}(j a)=\prod_{j=1}^{p-1} r_{j}(\bmod p)
$$

and the conclusion in (iii) follows from (\star).
(iv) Note that $\prod_{j=1}^{p-1}(j a)=\left(\prod_{j=1}^{p-1} j\right) a^{p-1}=(p-1)!a^{p-1}$; thus (iii) implies that

$$
(p-1)!a^{p-1}=(p-1)!(\bmod p)
$$

Since $p \nmid(p-1)$!, by the cancellation law for \mathbb{Z}_{p}, we conclude that $a^{p-1}=1(\bmod p)$.
Problem 7. Let $f: X \rightarrow Y$ be a function, and $E \subseteq Y$. Show that

1. $(10 \%) E=f\left(f^{-1}(E)\right)$ if and only if $E \subseteq \operatorname{Rng}(f)$.
2. $(10 \%) f\left(f^{-1}(E)\right)=E \cap \operatorname{Rng}(f)$.

Proof. 1. Since we have shown that $f\left(f^{-1}(E)\right) \subseteq E$ for all $E \subseteq Y$ in class, it suffices to show that $E \subseteq f\left(f^{-1}(E)\right)$ if and only if $E \subseteq \operatorname{Rng}(f)$.
" \Rightarrow " Assume that $E \subseteq f\left(f^{-1}(E)\right)$ and $y \in E$. Then there exists $x \in f^{-1}(E)$ such that $y=f(x)$. Therefore, $y \in \operatorname{Rng}(f)$ which shows $E \subseteq \operatorname{Rng}(f)$.
" \Leftarrow " Assume that $E \subseteq \operatorname{Rng}(f)$ and $y \in E$. Then there exists $x \in \operatorname{Dom}(f)$ such that $y=f(x)$. Since $y \in E, x \in f^{-1}(E)$; thus $y \in f\left(f^{-1}(E)\right)$. Therefore, $E \subseteq f\left(f^{-1}(E)\right)$.
2. Let $A=E \cap \operatorname{Rng}(f)$. Then $A \subseteq \operatorname{Rng}(f)$; thus we conclude from 1 that

$$
A=f\left(f^{-1}(A)\right)
$$

Moreover, $A \subseteq E$; thus $f^{-1}(A) \subseteq f^{-1}(E)$ which implies that $\left.f\left(f^{-1}\right)(A)\right) \subseteq f\left(f^{-1}(E)\right)$. Therefore, $E \cap \operatorname{Rng}(f) \subseteq f\left(f^{-1}(E)\right)$.

On the other hand, suppose that $y \in f\left(f^{-1}(E)\right)$. Then $y \in \operatorname{Rng}(f)$ and there exists $x \in f^{-1}(E)$ such that $y=f(x)$. Since $x \in f^{-1}(E)$ if and only if $f(x) \in E$, we find that $y \in E$. Therefore, $y \in E \cap \operatorname{Rng}(f)$ which shows that $f\left(f^{-1}(E)\right) \subseteq E \cap \operatorname{Rng}(f)$.

Problem 8. (10%) Let $f: X \rightarrow Y$ be a function. Prove that f is a one-to-one function if and only if

$$
f(A) \cap f(B)=f(A \cap B) \quad \forall A, B \subseteq X
$$

Proof. Since have shown that $f(A \cap B) \subseteq f(A) \cap f(B)$ in class, it suffices to show that f is one-to-one if and only if $f(A) \cap f(B) \subseteq f(A \cap B)$ for all $A, B \subseteq X$.
" \Rightarrow " Suppose that f is one-to-one and $A, B \subseteq X$. Let $y \in f(A) \cap f(B)$. Then there exists $x_{1} \in A$ and $x_{2} \in B$ such that $y=f\left(x_{1}\right)=f\left(x_{2}\right)$. Since f is one-to-one, we must have $x_{1}=x_{2}$; thus $x_{1} \in A \cap B$ which implies that $y \in f(A \cap B)$. Therefore, $f(A) \cap f(B) \subseteq f(A \cap B)$.
" \Leftarrow " Suppose that $f(A) \cap f(B) \subseteq f(A \cap B)$ for all $A, B \subseteq X$, and $f\left(x_{1}\right)=f\left(x_{2}\right)$. Let $A=\left\{x_{1}\right\}$ and $B=\left\{x_{2}\right\}$. Then $f(A)=f(B)=f(A) \cap f(B)$ which implies that $f(A \cap B) \neq \varnothing$. Therefore, $A \cap B \neq \varnothing$; thus $x_{1}=x_{2}$. Therefore, f is one-to-one.

