Basic Mathematics (基礎數學) MA1015A Midterm Exam II

National Central University, May. 17 2019

系級:______ 學號:_____ 姓名:_____

Problem 1. (10%) Show that for each even natural number n,

$$\prod_{k=2}^{n} \left(1 - \frac{(-1)^k}{k} \right) = \frac{1}{2} \,.$$

Proof. Let $S = \left\{ n \in \mathbb{N} \ \middle| \ \prod_{k=2}^{2n} \left(1 - \frac{(-1)^k}{k} \right) = \frac{1}{2} \right\}.$

1. $1 \in S$ since

$$\prod_{k=2}^{2} \left(1 - \frac{(-1)^k}{k} \right) = 1 - \frac{1}{2} = \frac{1}{2}.$$

2. Assume that $n \in S$. Then $\prod_{k=2}^{2n} \left(1 - \frac{(-1)^k}{k}\right) = \frac{1}{2}$; thus

$$\prod_{k=2}^{2(n+1)} \left(1 - \frac{(-1)^k}{k}\right) = \prod_{k=2}^{2n} \left(1 - \frac{(-1)^k}{k}\right) \cdot \left(1 - \frac{(-1)^{2n+1}}{2n+1}\right) \cdot \left(1 - \frac{(-1)^{2n+2}}{2n+2}\right)$$
$$= \frac{1}{2} \cdot \left(1 - \frac{-1}{2n+1}\right) \cdot \left(1 - \frac{1}{2n+2}\right) = \frac{1}{2} \cdot \frac{2n+2}{2n+1} \cdot \frac{2n+1}{2n+2} = \frac{1}{2} \cdot \frac{2n+2}{2n+2}$$

Therefore, $n + 1 \in S$.

By **PMI**, we conclude that $S = \mathbb{N}$.

Problem 2. (10%) Let $a_1 = a_2 = 1$, and for each natural number $n \ge 2$, let

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_{n-1}} \right).$$

Show that for each natural number $n, 1 \leq a_n \leq 2$.

Proof. Let $S = \{n \in \mathbb{N} \mid 1 \leq a_n \leq 2 \text{ and } 1 \leq a_{n+1} \leq 2\}.$

- 1. Then by assumption, $1 \in S$.
- 2. Suppose that $\{1, 2, \dots, n-1\} \subseteq S$. Then $1 \leq a_{n-1}, a_n \leq 2$; thus

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_{n-1}} \right) \ge \frac{1}{2} \left(1 + \frac{2}{2} \right) = \frac{1}{2} \cdot 2 = 1$$

and

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_{n-1}} \right) \le \frac{1}{2} \left(2 + \frac{2}{1} \right) = \frac{1}{2} \cdot 4 = 2.$$

Therefore, $1 \leq a_{n+1} \leq 2$. Combining with $1 \leq a_n \leq 2$, we find that $n \in S$.

By **PCI**, we conclude that $S = \mathbb{N}$.

Problem 3. (10%) Let A be a set, and R be a relation on A. Show that R is transitive if and only if $R \circ R \subseteq R$.

- *Proof.* " \Rightarrow " Assume that R is transitive and $(a, c) \in R \circ R$ be given. By the definition of the composition of relations, there exists b in A such that $(a, b) \in R$ and $(b, c) \in R$. Since R is transitive, $(a, c) \in R$ which shows that $R \circ R \subseteq R$.
- "⇐" Assume that $R \circ R \subseteq R$ and $(a, b), (b, c) \in R$. By the definition of the composition of relations, $(a, b) \in R \circ R$; thus by the assumption that $R \circ R \subseteq R$, we conclude that $(a, b) \in R$. Therefore, R is transitive.

Problem 4. (10%) Let X be a non-empty set and A be a non-empty proper subset of X. Set $R = X \times X - (A \times A)$. Is R reflexive on X? Symmetric? Transitive? Prove your answers.

- *Proof.* 1. <u>R is not reflexive on X</u> since if $a \in A$, then $a \in X$ but the fact that $(a, a) \in A \times A$ implies that $(a, a) \notin R = X \times X A \times A$.
 - 2. R is symmetric on X: Let $(b, c) \in X \times X$. Then

$$\begin{aligned} (b,c) \in R \Leftrightarrow (b,c) \notin A \times A \Leftrightarrow (b \notin A) \lor (c \notin A) \Leftrightarrow (c \notin A) \lor (b \notin A) \Leftrightarrow (c,b) \notin A \times A \\ \Leftrightarrow (c,b) \in R \,. \end{aligned}$$

3. <u>*R* is not transitive</u> on *X*: Let $a, b \in X$ but $a \in A$ and $b \notin A$. Then (by the argument above) $(a, b) \in R$ and $(b, a) \in R$. If *R* is transitive on *X*, we must have $(a, a) \in R$, a contradiction. \Box

Problem 5. (10%) Let p be a prime number, and $a \in \mathbb{N}$. Show that $a^2 = 1 \pmod{p}$ if and only if $a = 1 \pmod{p}$ or $a = -1 \pmod{p}$.

- *Proof.* "⇒" Suppose that $a^2 = 1 \pmod{p}$. Then $p \mid (a^2 1)$. Since $a^2 1 = (a 1)(a + 1)$ and p is a prime number, $p \mid (a 1)$ or $p \mid (a + 1)$. Therefore, $a = 1 \pmod{p}$ or $a = -1 \pmod{p}$.
- "←" If $a = 1 \pmod{p}$, then a = kp + 1 for some $k \in \mathbb{Z}$; thus $a^2 1 = k^2p^2 + 2kp$ which implies that $p \mid a^2 1$. Therefore, $a = 1 \pmod{p}$ implies that $a^2 = 1 \pmod{p}$. On the other hand, if $a = -1 \pmod{p}$, then a = kp 1 for some $k \in \mathbb{Z}$; thus $a^2 1 = k^2p^2 2kp$ which implies that $p \mid a^2 1$. Therefore, $a = -1 \pmod{p}$ implies that $a^2 = 1 \pmod{p}$; thus $a = 1 \pmod{p}$ or $a = -1 \pmod{p}$ implies that $a^2 = 1 \pmod{p}$.

Problem 6. Prove the Fermat's Little Theorem

Let p be a prime, and let $a \in \mathbb{N}$ such that $p \nmid a$. Then $a^{p-1} = 1 \pmod{p}$

by the following steps.

(i) (5%) Show that none of the p-1 integers $a, 2a, 3a, \dots, (p-1)a$ is divisible by p.

- (ii) (5%) Show that no two of the integers $a, 2a, 3a, \dots, (p-1)a$ are congruent modulu p.
- (iii) (5%) Show that $\prod_{j=1}^{p-1} (ja) = (p-1)! \pmod{p}$.
- (iv) (5%) Conclude from (iii) that $a^{p-1} = 1 \pmod{p}$.
- *Proof.* (i) Assume the contrary that there exists an integer $1 \le j \le p-1$ such that $p \mid ja$. Then $p \mid j$ or $p \mid a$. By assumption, $p \nmid a$; thus $p \mid j$ which implies that p divides an integer between 1 and p-1, a contradiction. Therefore, none of the p-1 integers $a, 2a, 3a, \dots, (p-1)a$ is divisible by p.
 - (ii) Assume the contrary that there exist $1 \leq j, k \leq p-1$ such that $ja = ka \pmod{p}$. Then $p \mid (j-k)a$ which implies that $p \mid j-k$ or $p \mid a$. By assumption, $p \nmid a$; thus $p \mid j-k$, a contradiction. Therefore, no two of the integers $a, 2a, 3a, \dots, (p-1)a$ are congruent modulu p.
- (iii) Let $0 \leq r_j < p$ be the remainder satisfying $ja = r_j \pmod{p}$. By (i), $r_j \neq 0$ for all $1 \leq j \leq p-1$. By (ii), $r_j \neq r_k$ if $j \neq k$ and $1 \leq j, k \leq p-1$. Therefore, $\{r_1, r_2, \cdots, r_{p-1}\}$ is a permutation of $\{1, 2, \cdots, n\}$ which implies that

$$\prod_{j=1}^{p-1} r_j = (p-1)! \,. \tag{(\star)}$$

Since $ja = r_j \pmod{p}$, we conclude that

$$\prod_{j=1}^{p-1} (ja) = \prod_{j=1}^{p-1} r_j \pmod{p},$$

and the conclusion in (iii) follows from (\star) .

(iv) Note that $\prod_{j=1}^{p-1} (ja) = \left(\prod_{j=1}^{p-1} j\right) a^{p-1} = (p-1)! a^{p-1}$; thus (iii) implies that $(p-1)! a^{p-1} = (p-1)! \pmod{p}$.

Since $p \nmid (p-1)!$, by the cancellation law for \mathbb{Z}_p , we conclude that $a^{p-1} = 1 \pmod{p}$.

Problem 7. Let $f: X \to Y$ be a function, and $E \subseteq Y$. Show that

- 1. (10%) $E = f(f^{-1}(E))$ if and only if $E \subseteq \operatorname{Rng}(f)$.
- 2. (10%) $f(f^{-1}(E)) = E \cap \operatorname{Rng}(f)$.
- *Proof.* 1. Since we have shown that $f(f^{-1}(E)) \subseteq E$ for all $E \subseteq Y$ in class, it suffices to show that $E \subseteq f(f^{-1}(E))$ if and only if $E \subseteq \operatorname{Rng}(f)$.
 - "⇒" Assume that $E \subseteq f(f^{-1}(E))$ and $y \in E$. Then there exists $x \in f^{-1}(E)$ such that y = f(x). Therefore, $y \in \operatorname{Rng}(f)$ which shows $E \subseteq \operatorname{Rng}(f)$.

"⇐" Assume that $E \subseteq \operatorname{Rng}(f)$ and $y \in E$. Then there exists $x \in \operatorname{Dom}(f)$ such that y = f(x). Since $y \in E$, $x \in f^{-1}(E)$; thus $y \in f(f^{-1}(E))$. Therefore, $E \subseteq f(f^{-1}(E))$.

2. Let $A = E \cap \operatorname{Rng}(f)$. Then $A \subseteq \operatorname{Rng}(f)$; thus we conclude from 1 that

$$A = f(f^{-1}(A))$$

Moreover, $A \subseteq E$; thus $f^{-1}(A) \subseteq f^{-1}(E)$ which implies that $f(f^{-1})(A) \subseteq f(f^{-1}(E))$. Therefore, $E \cap \operatorname{Rng}(f) \subseteq f(f^{-1}(E))$.

On the other hand, suppose that $y \in f(f^{-1}(E))$. Then $y \in \operatorname{Rng}(f)$ and there exists $x \in f^{-1}(E)$ such that y = f(x). Since $x \in f^{-1}(E)$ if and only if $f(x) \in E$, we find that $y \in E$. Therefore, $y \in E \cap \operatorname{Rng}(f)$ which shows that $f(f^{-1}(E)) \subseteq E \cap \operatorname{Rng}(f)$.

Problem 8. (10%) Let $f: X \to Y$ be a function. Prove that f is a one-to-one function if and only if

$$f(A) \cap f(B) = f(A \cap B) \qquad \forall A, B \subseteq X$$

Proof. Since have shown that $f(A \cap B) \subseteq f(A) \cap f(B)$ in class, it suffices to show that f is one-to-one if and only if $f(A) \cap f(B) \subseteq f(A \cap B)$ for all $A, B \subseteq X$.

- "⇒" Suppose that f is one-to-one and $A, B \subseteq X$. Let $y \in f(A) \cap f(B)$. Then there exists $x_1 \in A$ and $x_2 \in B$ such that $y = f(x_1) = f(x_2)$. Since f is one-to-one, we must have $x_1 = x_2$; thus $x_1 \in A \cap B$ which implies that $y \in f(A \cap B)$. Therefore, $f(A) \cap f(B) \subseteq f(A \cap B)$.
- "⇐" Suppose that $f(A) \cap f(B) \subseteq f(A \cap B)$ for all $A, B \subseteq X$, and $f(x_1) = f(x_2)$. Let $A = \{x_1\}$ and $B = \{x_2\}$. Then $f(A) = f(B) = f(A) \cap f(B)$ which implies that $f(A \cap B) \neq \emptyset$. Therefore, $A \cap B \neq \emptyset$; thus $x_1 = x_2$. Therefore, f is one-to-one.