Chapter 4. Functions

- §4.1 Functions as Relations
- §4.2 Construction of Functions
- §4.3 Functions that are Onto; One-to-One Functions
- §4.4 Inverse Functions
- §4.5 Set Images

(a)

臣

Recall the usual definition of functions from A to B:

Definition

Let *A* and *B* be sets. A *function* $f: A \to B$ consists of two sets *A* and *B* together with a "rule" that assigns to each $x \in A$ a special element of *B* denoted by f(x). One writes $x \mapsto f(x)$ to denote that *x* is mapped to the element f(x). *A* is called the *domain* of *f*, and *B* is called the *target* or *co-domain* of *f*. The *range* of *f* or the *image* of *f*, is the subset of *B* defined by $f(A) = \{f(x) \mid x \in A\}$.

Each function is associated with a collection of ordered pairs

$$\{(x, f(x)) \mid x \in A\} \subseteq A \times B.$$

Since a collection of ordered pairs is a relation, we can say that a function is a relation from one set to another.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

However, not every relation can serve as a function. A function is a relation with additional special properties and we have the following

Definition (Alternative Definition of Functions)

A **function** (or **mapping**) from A to B is a relation f from A to B such that

• the domain of f is A; that is, $(\forall x \in A)(\exists y \in B)((x, y) \in f)$, and

2 if $(x, y) \in f$ and $(x, z) \in f$, then y = z.

We write $f: A \rightarrow B$, and this is read "f is a function from A to B" or "f maps A to B". The set B is called the **co-domain** of f. In the case where B = A, we say f is a function on A.

When $(x, y) \in f$, we write y = f(x) instead of *xfy*. We say that *y* is the *image* of *f* at *x* (or value of *f* at *x*) and that *x* is a *pre-image* of *y*.

・ロト ・回ト ・ヨト ・ヨト

Remark:

- A function has only one domain and one range but many possible co-domains.
- ② A function on ℝ is usually called a real-valued function or simply real function. The domain of a real function is usually understood to be the largest possible subset of ℝ on which the function takes values.

Definition

A function x with domain \mathbb{N} is called an *infinite sequence*, or simply a *sequence*. The image of the natural number *n* is usually written as x_n instead of x(n) and is called the *n*-th term of the sequence.

(4月) (1日) (日)

Definition

- Let A, B be sets, and $A \subseteq B$.
 - The the *identity function/map* on A is the function $I_A : A \rightarrow A$ given by $I_A(x) = x$ for all $x \in A$.
 - **2** The *inclusion function/map* from A to B is the function ι : $A \rightarrow B$ given by $\iota(x) = x$ for all $x \in A$.
 - Some the characteristic/indicator function of A (defined on B) is the map 1_A : B → ℝ given by

$$\mathbf{1}_{A}(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \in B \backslash A. \end{cases}$$

Definition (Cont'd)

The greatest integer function on ℝ is the function [·] : ℝ → ℤ given by

[x] = the largest integer which is not greater than x. The function $[\cdot]$ is also called the *floor function* or the *Gauss function*.

Let *R* be an equivalence relation on *A*. The *canonical map* for the equivalence relation *R* is the map from *A* to *A*/*R* which maps *a* ∈ *A* to x̄, the equivalence class of *a* modulo *R*.

(日) (日) (日) (日) (日)

Theorem

Two functions f and g are equal if and only if

- $\operatorname{Dom}(f) = \operatorname{Dom}(g)$, and
- 2 for all $x \in \text{Dom}(f)$, f(x) = g(x).

Example

The identity map of A and the inclusion map from A to B are identical functions.

Example

 $f(x) = \frac{x}{x}$ and g(x) = 1 are different functions since they have different domains.

Remark:

When a rule of correspondence assigns more than one values to an object in the domain, we say "the function is not well-defined", meaning that it is not really a function. A proof that a function is well-defined is nothing more than a proof that the relation defined by a given rule is single valued.

Example

Let \overline{x} denote the equivalence class of x modulo the congruence relation modulo 4 and \tilde{y} denote the equivalence class of y modulo the congruence relation modulo 10. Define $f(\overline{x}) = 2 \cdot x$. Then this "function" is not really a function since $\overline{0} = \overline{4}$ but $2 \cdot \overline{0} = 0$ while $2 \cdot 4 = 8 \neq 0$. In other words, the way f assigns value to \overline{x} is not well-defined.

イロト イヨト イヨト イヨト

Example

Let \overline{x} denote the equivalence class of x modulo the congruence relation modulo 8 and \tilde{y} denote the equivalence class of y modulo the congruence relation modulo 4. The function $f: \mathbb{Z}_8 \to \mathbb{Z}_4$ given by $\widetilde{f(x)} = \widetilde{x+2}$ is well-defined. To see this, suppose that $\overline{x} = \overline{z}$ in \mathbb{Z}_8 . Then 8 divides x-z which implies that 4 divides x-z; thus 4 divides (x+2) - (z+2). Therefore, $x+2 = z+2 \pmod{4}$ or equivalently, $\widetilde{x+2} = \widetilde{z+2}$. So f is well-defined.

<回 > < 回 > < 回 > < 回 >

Definition

Let $f: A \rightarrow B$. The *inverse* of f is the relation from B to A:

$$f^{-1} = \left\{ (y, x) \in B \times A \, \big| \, y = f(x) \right\} = \left\{ (y, x) \in B \times A \, \big| \, (x, y) \in f \right\}.$$

When f^{-1} describes a function, f^{-1} is called the *inverse function/map* of *f*.

Definition

Let $f: A \to B$ and $g: B \to C$ be functions. The *composite* of fand g is the relation from A to C: $g \circ f = \{(x, z) \in A \times C | \text{ there exists (a unique) } y \in B \text{ such that}$ $(x, y) \in f \text{ and } (y, z) \in g\}.$

Remark: Using the notation in the definition of functions, if $(x, z) \in g \circ f$, then $z = (g \circ f)(x)$. On the other hand, if $(x, z) \in g \circ f$, there exists (a unique) $y \in B$ such that $(x, y) \in f$ and $(y, z) \in g$. Then y = f(x) and z = g(y). Therefore, we also have z = g(f(x)); thus $(g \circ f)(x) = g(f(x))$.

Theorem

Let A, B and C be sets, and $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Then $g \circ f$ is a function from A to C.

イロン イヨン イヨン イヨン 三日

Proof of $g \circ f$ is a function from A to C.

By the definition of composition of relations, $g \circ f$ is a relation from A to C.

- First, we show that Dom(g ∘ f) = A. Clearly Dom(g ∘ f) ⊆ A, so it suffices to show that A ⊆ Dom(g ∘ f). Let x ∈ A. Since f: A → B is a function, there exists y ∈ B such that (x, y) ∈ f. Since g : B → C is a function, there exists z ∈ C such that (y, z) ∈ g. This shows that for every x ∈ A, there exists z ∈ C such that (x, z) ∈ g ∘ f; thus Dom(g ∘ f) = A.
- Next, we show that if (x, z₁) ∈ g ∘ f and (x, z₂) ∈ g ∘ f, then z₁ = z₂. Suppose that (x, z₁) ∈ g ∘ f and (x, z₂) ∈ g ∘ f. Then there exists y₁, y₂ ∈ B such that (x, y₁) ∈ f and (y₁, z₁) ∈ g, while (x, y₂) ∈ f and (y₂, z₂) ∈ g. Since f is a function, y₁ = y₂; thus that g is a function implies that z₁ = z₂.

・ロット (四) ((日) (日) (日)

Recall that if A, B, C, D are sets, R be a relation from A to B, S be a relation from B to C, and T be a relation from C to D. Then

$$T \circ (S \circ R) = (T \circ S) \circ R.$$

$$I_B \circ R = R \text{ and } R \circ I_A = R.$$

Theorem

Let A, B, C, D be sets, and $f : A \to B$, $g : B \to C$, $h : C \to D$ be functions. Then $h \circ (g \circ f) = (h \circ g) \circ f$.

Theorem

Let $f: A \to B$ be a function. Then $f \circ I_A = f$ and $I_B \circ f = f$.

Theorem

Let $f : A \to B$ be a function, and $C = \operatorname{Rng}(f)$. If $f^{-1} : C \to A$ is a function, then $f^{-1} \circ f = I_A$ and $f \circ f^{-1} = I_C$.

Definition

Let $f: A \to B$ be a function, and $D \subseteq A$. The *restriction* of f to D, denoted by $f|_D$, is the function

$$f|_D = \{(x, y) | y = f(x) \text{ and } x \in D\}.$$

If g and h are functions and g is a restriction of h, the h is called an *extension* of g.

Example

Let F and G be functions

$$F = \{(1,2), (2,6), (3,-9), (5,7)\},\$$

$$G = \{(1,8), (2,6), (4,8), (5,7), (8,3)\}$$

Then $F \cap G = \{(2, 6), (5, 7)\}$ is a function with domain $\{2, 5\}$ which is a proper subset of $Dom(F) \cap Dom(G) = \{1, 2, 5\}$. On the other hand, $\{(1, 2), (1, 8)\} \subseteq F \cup G$; thus $F \cup G$ cannot be a function.

Theorem

Suppose that f and g are functions. Then $f \cap g$ is a function with domain $A = \{x \mid f(x) = g(x)\}$, and $f \cap g = f|_A = g|_A$.

Proof.

Let
$$(x, y) \in f \cap g$$
. Then $y = f(x) = g(x)$; thus
 $\operatorname{Dom}(f \cap g) = \{x \mid f(x) = g(x)\} (\equiv A).$

If $(x, y_1), (x, y_2) \in f \cap g$, $(x, y_1), (x, y_2) \in f$ which, by the fact that f is a function, implies that $y_1 = y_2$. Therefore, $f \cap g$ is a function. Moreover,

$$f \cap g = \left\{ (x, y) \, \middle| \, \exists \, x \in A, \, y = f(x) \right\}$$

which implies that $f \cap g = f|_A$.