Chapter 4．Functions
§4．1 Functions as Relations
§4．2 Construction of Functions
§4．3 Functions that are Onto；One－to－One Functions
§4．4 Inverse Functions
§4．5 Set Images

## §4．1 Functions as Relations

Recall the usual definition of functions from $A$ to $B$ ：

## Definition

Let $A$ and $B$ be sets．A function $f: A \rightarrow B$ consists of two sets $A$ and $B$ together with a＂rule＂that assigns to each $x \in A$ a special element of $B$ denoted by $f(x)$ ．One writes $x \mapsto f(x)$ to denote that $x$ is mapped to the element $f(x)$ ．$A$ is called the domain of $f$ ，and $B$ is called the target or co－domain of $f$ ．The range of $f$ or the image of $f$ ，is the subset of $B$ defined by $f(A)=\{f(x) \mid x \in A\}$ ．

Each function is associated with a collection of ordered pairs

$$
\{(x, f(x)) \mid x \in A\} \subseteq A \times B
$$

Since a collection of ordered pairs is a relation，we can say that a function is a relation from one set to another．

## §4．1 Functions as Relations

However，not every relation can serve as a function．A function is a relation with additional special properties and we have the following

## Definition（Alternative Definition of Functions）

A function（or mapping）from $A$ to $B$ is a relation $f$ from $A$ to $B$ such that
（1）the domain of $f$ is $A$ ；that is，$(\forall x \in A)(\exists y \in B)((x, y) \in f)$ ，and
（2）if $(x, y) \in f$ and $(x, z) \in f$ ，then $y=z$ ．
We write $f: A \rightarrow B$ ，and this is read＂$f$ is a function from $A$ to $B$＂ or＂$f$ maps $A$ to $B$＂．The set $B$ is called the co－domain of $f$ ．In the case where $B=A$ ，we say $f$ is a function on $A$ ．
When $(x, y) \in f$ ，we write $y=f(x)$ instead of $x f y$ ．We say that $y$ is the image of $f$ at $x$（or value of $f$ at $x$ ）and that $x$ is a pre－image of $y$ ．

## §4．1 Functions as Relations

## Remark：

（1）A function has only one domain and one range but many pos－ sible co－domains．
（2）A function on $\mathbb{R}$ is usually called a real－valued function or sim－ ply real function．The domain of a real function is usually understood to be the largest possible subset of $\mathbb{R}$ on which the function takes values．

## Definition

A function $x$ with domain $\mathbb{N}$ is called an infinite sequence，or simply a sequence．The image of the natural number $n$ is usually written as $x_{n}$ instead of $x(n)$ and is called the $n$－th term of the sequence．

## §4．1 Functions as Relations

## Definition

Let $A, B$ be sets，and $A \subseteq B$ ．
（1）The the identity function／map on $A$ is the function $I_{A}: A \rightarrow$ $A$ given by $I_{A}(x)=x$ for all $x \in A$ ．
（2）The inclusion function／map from $A$ to $B$ is the function $\iota$ ： $A \rightarrow B$ given by $\iota(x)=x$ for all $x \in A$ ．
（3）The characteristic／indicator function of $A$（defined on $B$ ）is the $\operatorname{map} 1_{A}: B \rightarrow \mathbb{R}$ given by

$$
\mathbf{1}_{A}(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \in B \backslash A\end{cases}
$$

## §4．1 Functions as Relations

## Definition（Cont＇d）

（9）The greatest integer function on $\mathbb{R}$ is the function $[\cdot]: \mathbb{R} \rightarrow \mathbb{Z}$ given by
$[x]=$ the largest integer which is not greater than $x$.
The function［．］is also called the floor function or the Gauss function．
（3）Let $R$ be an equivalence relation on $A$ ．The canonical map for the equivalence relation $R$ is the map from $A$ to $A / R$ which maps $a \in A$ to $\bar{x}$ ，the equivalence class of a modulo $R$ ．

## §4．1 Functions as Relations

## Theorem

Two functions $f$ and $g$ are equal if and only if
（1） $\operatorname{Dom}(f)=\operatorname{Dom}(g)$ ，and
（2）for all $x \in \operatorname{Dom}(f), f(x)=g(x)$ ．

## Example

The identity map of $A$ and the inclusion map from $A$ to $B$ are identical functions．

## Example

$f(x)=\frac{x}{x}$ and $g(x)=1$ are different functions since they have different domains．

## §4．1 Functions as Relations

## Remark：

When a rule of correspondence assigns more than one values to an object in the domain，we say＂the function is not well－defined＂， meaning that it is not really a function．A proof that a function is well－defined is nothing more than a proof that the relation defined by a given rule is single valued．

## Example

Let $\bar{x}$ denote the equivalence class of $x$ modulo the congruence re－ lation modulo 4 and $\tilde{y}$ denote the equivalence class of $y$ modulo the congruence relation modulo 10 ．Define $f(\bar{x})=\widetilde{2 \cdot x}$ ．Then this ＂function＂is not really a function since $\overline{0}=\overline{4}$ but $\widetilde{2 \cdot 0}=\widetilde{0}$ while $\widetilde{2 \cdot 4}=\widetilde{8} \neq \widetilde{0}$ ．In other words，the way $f$ assigns value to $\bar{x}$ is not well－defined．

## §4．1 Functions as Relations

## Example

Let $\bar{x}$ denote the equivalence class of $x$ modulo the congruence re－ lation modulo 8 and $\widetilde{y}$ denote the equivalence class of $y$ modulo the congruence relation modulo 4 ．The function $f: \mathbb{Z}_{8} \rightarrow \mathbb{Z}_{4}$ given by $f(\bar{x})=\widetilde{x+2}$ is well－defined．To see this，suppose that $\bar{x}=\bar{z}$ in $\mathbb{Z}_{8}$ ． Then 8 divides $x-z$ which implies that 4 divides $x-z$ ；thus 4 divides $(x+2)-(z+2)$ ．Therefore，$x+2=z+2(\bmod 4)$ or equivalently， $\widetilde{x+2}=\widetilde{z+2}$ ．So $f$ is well－defined．

## §4．2 Construction of Functions

## Definition

Let $f: A \rightarrow B$ ．The inverse of $f$ is the relation from $B$ to $A$ ：

$$
f^{-1}=\{(y, x) \in B \times A \mid y=f(x)\}=\{(y, x) \in B \times A \mid(x, y) \in f\} .
$$

When $f^{-1}$ describes a function，$f^{-1}$ is called the inverse function／ map of $f$ ．

## Definition

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions．The composite of $f$ and $g$ is the relation from $A$ to $C$ ：

$$
\begin{aligned}
& g \circ f=\{(x, z) \in A \times C \mid \text { there exists (a unique) } y \in B \text { such that } \\
& \qquad(x, y) \in f \text { and }(y, z) \in g\} .
\end{aligned}
$$

## §4．2 Construction of Functions

Remark：Using the notation in the definition of functions，if $(x, z) \in$ $g \circ f$ ，then $z=(g \circ f)(x)$ ．On the other hand，if $(x, z) \in g \circ f$ ，there exists（a unique）$y \in B$ such that $(x, y) \in f$ and $(y, z) \in g$ ．Then $y=f(x)$ and $z=g(y)$ ．Therefore，we also have $z=g(f(x))$ ；thus $(g \circ f)(x)=g(f(x))$.

## Theorem

Let $A, B$ and $C$ be sets，and $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions． Then $g \circ f$ is a function from $A$ to $C$ ．

## §4．2 Construction of Functions

## Proof of

By the definition of composition of relations，$g \circ f$ is a relation from $A$ to $C$ ．
（1）First，we show that $\operatorname{Dom}(g \circ f)=A$ ．Clearly $\operatorname{Dom}(g \circ f) \subseteq A$ ， so it suffices to show that $A \subseteq \operatorname{Dom}(g \circ f)$ ．Let $x \in A$ ．Since $f: A \rightarrow B$ is a function，there exists $y \in B$ such that $(x, y) \in f$ ． Since $g: B \rightarrow C$ is a function，there exists $z \in C$ such that $(y, z) \in g$ ．This shows that for every $x \in A$ ，there exists $z \in C$ such that $(x, z) \in g \circ f$ ；thus $\operatorname{Dom}(g \circ f)=A$ ．
（2）Next，we show that if $\left(x, z_{1}\right) \in g \circ f$ and $\left(x, z_{2}\right) \in g \circ f$ ，then $z_{1}=z_{2}$ ．Suppose that $\left(x, z_{1}\right) \in g \circ f$ and $\left(x, z_{2}\right) \in g \circ f$ ．Then there exists $y_{1}, y_{2} \in B$ such that $\left(x, y_{1}\right) \in f$ and $\left(y_{1}, z_{1}\right) \in g$ ， while $\left(x, y_{2}\right) \in f$ and $\left(y_{2}, z_{2}\right) \in g$ ．Since $f$ is a function，$y_{1}=y_{2}$ ； thus that $g$ is a function implies that $z_{1}=z_{2}$ ．

## §4．2 Construction of Functions

Recall that if $A, B, C, D$ are sets，$R$ be a relation from $A$ to $B, S$ be a relation from $B$ to $C$ ，and $T$ be a relation from $C$ to $D$ ．Then
（1）$T \circ(S \circ R)=(T \circ S) \circ R$ ．
（2）$I_{B} \circ R=R$ and $R \circ I_{A}=R$ ．

## Theorem

Let $A, B, C, D$ be sets，and $f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D$ be functions．Then $h \circ(g \circ f)=(h \circ g) \circ f$ ．

## Theorem

Let $f: A \rightarrow B$ be a function．Then $f \circ I_{A}=f$ and $I_{B} \circ f=f$ ．

## Theorem

Let $f: A \rightarrow B$ be a function，and $C=\operatorname{Rng}(f)$ ．If $f^{-1}: C \rightarrow A$ is a function，then $f^{-1} \circ f=I_{A}$ and $f \circ f^{-1}=I_{C}$ ．

## §4．2 Construction of Functions

## Definition

Let $f: A \rightarrow B$ be a function，and $D \subseteq A$ ．The restriction of $f$ to $D$ ， denoted by $\left.f\right|_{D}$ ，is the function

$$
\left.f\right|_{D}=\{(x, y) \mid y=f(x) \text { and } x \in D\} .
$$

If $g$ and $h$ are functions and $g$ is a restriction of $h$ ，the $h$ is called an extension of $g$ ．

## Example

Let $F$ and $G$ be functions

$$
\begin{aligned}
& F=\{(1,2),(2,6),(3,-9),(5,7)\} \\
& G=\{(1,8),(2,6),(4,8),(5,7),(8,3)\}
\end{aligned}
$$

Then $F \cap G=\{(2,6),(5,7)\}$ is a function with domain $\{2,5\}$ which is a proper subset of $\operatorname{Dom}(F) \cap \operatorname{Dom}(G)=\{1,2,5\}$ ．
On the other hand，$\{(1,2),(1,8)\} \subseteq F \cup G$ ；thus $F \cup G$ cannot be a function．

## §4．2 Construction of Functions

## Theorem

Suppose that $f$ and $g$ are functions．Then $f \cap g$ is a function with domain $A=\{x \mid f(x)=g(x)\}$ ，and $f \cap g=\left.f\right|_{A}=\left.g\right|_{A}$ ．

## Proof．

Let $(x, y) \in f \cap g$ ．Then $y=f(x)=g(x)$ ；thus

$$
\operatorname{Dom}(f \cap g)=\{x \mid f(x)=g(x)\}(\equiv A)
$$

If $\left(x, y_{1}\right),\left(x, y_{2}\right) \in f \cap g,\left(x, y_{1}\right),\left(x, y_{2}\right) \in f$ which，by the fact that $f$ is a function，implies that $y_{1}=y_{2}$ ．Therefore，$f \cap g$ is a function． Moreover，

$$
f \cap g=\{(x, y) \mid \exists x \in A, y=f(x)\}
$$

which implies that $f \cap g=\left.f\right|_{A}$ ．

