§3．3 Partitions

Example

Let $A=\{1,2,3,4\}$ ，and let $\mathcal{P}=\{\{1\},\{2,3\},\{4\}\}$ be a partition of A with three sets．The equivalence relation Q associated with \mathcal{P} is $\{(1,1),(2,2),(3,3),(4,4),(2,3),(3,2)\}$ ．The three equivalence classes for Q are $\overline{1}=\{1\}, \overline{2}=\overline{3}=\{2,3\}$ and $\overline{4}=\{4\}$ ．The collection of all equivalence classes A / Q is precisely \mathcal{P} ．

Example

The collect $\mathcal{P}=\left\{A_{0}, A_{1}, A_{2}, A_{3}\right\}$ ，where

$$
A_{j}=\{4 k+j \mid k \in \mathbb{Z}\} \text { for } j=\{0,1,2,3\}
$$

is a partition of \mathbb{Z} because of the division algorithm．The equivalence relation associated with the partition \mathcal{P} is the relation of congruence modulo 4 ，and each A_{j} is the residue class of j modulo 4 for $j=$ $0,1,2,3$ ．

§3．4 Modular Arithmetic

Theorem

Let m be a positive integer and a, b, c and d be integers．If $a=c$ $(\bmod m)$ and $b=d(\bmod m)$ ，then $a+b=c+d(\bmod m)$ and $a \cdot b=c \cdot d(\bmod m)$ ．

Proof．

Since $a=c(\bmod m)$ and $b=d(\bmod m)$ ，we have $a-c=m k_{1}$ and $b-d=m k_{2}$ for some $k_{1}, k_{2} \in \mathbb{Z}$ ．Then

$$
a+b=c+m k_{1}+d+m k_{2}=c+d+m\left(k_{1}+k_{2}\right)
$$

and

$$
a \cdot b=\left(c+m k_{1}\right) \cdot\left(d+m k_{2}\right)=c \cdot d+m\left(c \cdot k_{2}+d \cdot k_{1}+k_{1} \cdot k_{2}\right) .
$$

Therefore，$a+b=c+d(\bmod m)$ and $a \cdot b=c \cdot d(\bmod m)$ ．

§3．4 Modular Arithmetic

Definition

For each natural number m ，
（1）the sum of the classes \bar{x} and \bar{y} in \mathbb{Z}_{m} ，denoted by $\bar{x}+\bar{y}$ ，is defined to be the class containing the integer $x+y$ ；
（2）the product of the classes \bar{x} and \bar{y} in \mathbb{Z}_{m} ，denoted by $\bar{x} \cdot \bar{y}$ ，is defined to be the class containing the integer $x \cdot y$ ．
In symbols， $\bar{x}+\bar{y}=\overline{x+y}$ and $\bar{x} \cdot \bar{y}=\bar{x} \cdot y$ ．

Example

In $\mathbb{Z}_{6}, \overline{5}+\overline{3}=\overline{2}$ and $\overline{4} \cdot \overline{5}=\overline{2}$ ．

Example

$\ln \mathbb{Z}_{8},(\overline{5}+\overline{7}) \cdot(\overline{6}+\overline{5})=\overline{12} \cdot \overline{11}=\overline{4} \cdot \overline{3}=\overline{12}=\overline{4}$.

§3．4 Modular Arithmetic

Example

Find $\overline{3^{63}}$ in \mathbb{Z}_{7} ．Since

$$
\overline{3^{1}}=\overline{3}, \quad \overline{3^{2}}=\overline{2}, \quad \overline{3^{3}}=\overline{6}, \quad \overline{3^{4}}=\overline{4}, \quad \overline{3^{5}}=\overline{5}, \quad \overline{3^{6}}=\overline{1}
$$

we have $\overline{3^{63}}=\overline{3^{60} \cdot 3^{3}}=\overline{6}$ ．

Example

For every integer $k, 6$ divides $k^{3}+5 k$ ．In fact，by the division algorithm，for each $k \in \mathbb{Z}$ there exists a unique pair (q, r) such that $k=6 q+r$ for some $0 \leqslant r<5$ ．Therefore，in \mathbb{Z}_{6} we have

$$
\begin{aligned}
\overline{k^{3}+5 k} & =\overline{(6 q+r)^{3}}+\overline{5(6 q+r)}=\overline{r^{3}}+\overline{5 \cdot r} \\
& =\overline{r^{3}}+\overline{(-1) \cdot r}=\overline{r^{3}-r}
\end{aligned}
$$

It is clear that then $\overline{k^{3}+5 k}=\overline{0}$ since

$$
\overline{0^{3}-0}=\overline{1^{3}-1}=\overline{2^{3}-2}=\overline{3^{3}-3}=\overline{4^{3}-4}=\overline{5^{3}-5} .
$$

§3．4 Modular Arithmetic

Theorem

Let m be a positive composite integer．Then there exists non－zero equivalence classes \bar{x} and \bar{y} in \mathbb{Z}_{m} such that $\bar{x} \cdot \bar{y}=\overline{0}$ ．

Proof．

Since m is a positive composite integer，$m=x \cdot y$ for some $x, y \in \mathbb{N}$ ， $1<x, y<m$ ．Since $1<x, y<m, \bar{x}, \bar{y} \neq \overline{0}$ ．Therefore，in \mathbb{Z}_{m} $\overline{0}=\bar{m}=\bar{x} \cdot \bar{y}$ which concludes the theorem．

Theorem

Let p be a prime．If $\bar{x} \cdot \bar{y}=\overline{0}$ in \mathbb{Z}_{p} ，then either $\bar{x}=\overline{0}$ or $\bar{y}=\overline{0}$ ．

Proof．

Let $\bar{x}, \bar{y} \in \mathbb{Z}_{p}$ and $\bar{x} \cdot \bar{y}=\overline{0}$ ．Then $x \cdot y=0(\bmod p)$ ．Therefore，p divides $x \cdot y$ ．Since p is prime，$p \mid x$ or $p \mid y$ which implies that $\bar{x}=\overline{0}$ or $\bar{y}=\overline{0}$ ．

§3．4 Modular Arithmetic

Theorem

Let p be a prime．If $x y=x z(\bmod p)$ and $x \neq 0(\bmod p)$ ，then $y=z(\bmod p)$ ．

Proof．

If $x y=x z(\bmod p)$ ，then $x(y-z)=0(\bmod p)$ ．By the previous theorem $\bar{x}=\overline{0}$ or $\overline{y-z}=\overline{0}$ ．Since $x \neq 0(\bmod p)$ ，we must have $\bar{y}=\bar{z}$ ；thus $y=z(\bmod p)$ ．

Corollary（Cancellation Law for \mathbb{Z}_{p} ）

Let p be a prime，and $\bar{x}, \bar{y}, \bar{z} \in \mathbb{Z}_{p}$ ．If $\bar{x} \cdot \bar{y}=\bar{x} \cdot \bar{z}$ ，then $\bar{x} \neq \overline{0}$ or $\bar{y}=\bar{z}$ ．

