§2．5 Equivalent Forms of Induction

Theorem（Division Algorithm）

For all integers a and b ，where $a \neq 0$ ，there exist a unique pair of integers (q, r) such that $b=a q+r$ and $0 \leqslant r<|a|$ ．In notation， $(\forall(a, b) \in(\mathbb{Z} \backslash\{0\}) \times \mathbb{Z})(\exists!(q, r) \in \mathbb{Z} \times \mathbb{Z})[(a=b q+r) \wedge(0 \leqslant r<|a|)]$.

Proof．

W．L．O．G．，we assume that $a>0$ and a does not divide b ．Define

$$
S=\{b-a k \mid k \in \mathbb{Z} \text { and } b-a k \geqslant 0\} .
$$

Then $0 \notin S$（which implies that $b \neq 0$ ）．It is clear that if $b>0$ ， then $S \neq \varnothing$ ．If $b<0$ ，then $-b>0$ ；thus the Archimedean property implies that there exists $k \in \mathbb{N}$ such that $a k>-b$ ．Therefore， $b-a(-k)>0$ which also implies that $S \neq \varnothing$ ．In either case，S is a non－empty subset of \mathbb{N} ；thus WOP implies that S has a smallest element r ．Then $b-a q=r$ for some $q \in \mathbb{Z}$ ；thus $b=a q+r$ and $r>0$ ．

§2．5 Equivalent Forms of Induction

Proof（Cont＇d）．

Next，we show that $r<|a|=a$ ．Assume the contrary that $r \geqslant|a|=a$ ．Then $b-a(q+1)=b-a q-a=r-a \geqslant 0$ ．Since we assume that $0 \notin S$ ，we must have $b-a(q+1)>0$ ．Therefore，

$$
0<b-a(q+1)=r-a<r=b-a q
$$

which shows that r is not the smallest element of S ，a contradiction．
To complete the proof，we need to show that the pair (q, r) is unique．Suppose that there exist $\left(q_{1}, r_{1}\right)$ and $\left(q_{2}, r_{2}\right)$ ，where $0 \leqslant$ $r_{1}, r_{2}<|a|$ ，such that

$$
b=a q_{1}+r_{1}=a q_{2}+r_{2} .
$$

W．L．O．G．，we can assume that $r_{1} \geqslant r_{2}$ ；thus $a\left(q_{2}-q_{1}\right)=r_{1}-r_{2} \geqslant 0$ ． Therefore，a divides $r_{1}-r_{2}$ which is impossible if $0<r_{1}-r_{2}<a$ ． Therefore，$r_{1}=r_{2}$ and then $q_{1}=q_{2}$ ．

Chapter 3．Relations and Partitions

§3．1 Relations
§3．2 Equivalence Relations
§3．3 Partitions
§3．4 Modular Arithmetic
§3．5 Ordering Relations

§3．1 Relations

Definition

Let A and B be sets．R is a relation from A to B if R is a subset of $A \times B$ ．A relation from A to A is called a relation on A ．If $(a, b) \in R$ ，we say a is R－related（or simply related）to b and write $a R b$ ．If $(a, b) \notin R$ ，we write $a R b$ ．

Example

Let R be the relation＂is older than＂on the set of all people．If a is 32 yrs old，b is 25 yrs old，and c is 45 yrs old，then $a R b, c R b$ ，$a R c$ ． Similarly，the＂less than＂relation on \mathbb{R} is the set $\{(x, y) \mid x<y\}$ ．

§3．1 Relations

Remark：

Let A and B be sets．Every subset of $A \times B$ is a relations from A to B ； thus every collection of ordered pairs is a relation．In particular，the empty set \varnothing and the set $A \times B$ are relations from A to $B(R=\varnothing$ is the relation that＂nothing＂is related，while $R=A \times B$ is the relation that＂everything＂is related）．

§3．1 Relations

Definition

For any set A ，the identity relation on A is the（diagonal）set

$$
I_{A}=\{(a, a) \mid a \in A\}
$$

Definition

Let A and B be sets，and R be a relation from A to B ．The domain of R is the set

$$
\operatorname{Dom}(R)=\{x \in A \mid(\exists y \in B)(x R y)\}
$$

and the range of R is the set

$$
\operatorname{Rng}(R)=\{y \in B \mid(\exists x \in A)(x R y)\}
$$

In other words，the domain of a relation R from A to B is the collection of all first coordinate of ordered pairs in R ，and the range of R is the collection of all second coordinates．

§3．1 Relations

Definition

Let A and B be sets，and R be a relation from A to B ．The inverse of R ，denoted by R^{-1} ，is the relation

$$
R^{-1}=\{(y, x) \in B \times A \mid(x, y) \in R \text { (or equivalently, } x R y \text {) }\}
$$

In other words，$x R y$ if and only if $y R^{-1} x$ or equivalently，$(x, y) \in R$ if and only if $(y, x) \in R^{-1}$ ．

Example

Let $T=\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y<4 x^{2}-7\right\}$ ．To find the inverse of T ， we note that

$$
\begin{aligned}
&(x, y) \in T^{-1} \Leftrightarrow(y, x) \in T \Leftrightarrow x<4 y^{2}-7 \Leftrightarrow x+7<4 y^{2} \\
& \Leftrightarrow(x, y) \in\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x+7<0\} \cup \\
&\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \left\lvert\, 0 \leqslant \frac{x+7}{4}<y^{2}\right.\right\}
\end{aligned}
$$

§3．1 Relations

Theorem

Let A and B be sets，and R be a relation from A to B ．
（1） $\operatorname{Dom}\left(R^{-1}\right)=\operatorname{Rng}(R)$ ．
（2） $\operatorname{Rng}\left(R^{-1}\right)=\operatorname{Dom}(R)$ ．

Proof．

The theorem is concluded by

$$
\begin{aligned}
b \in \operatorname{Dom}\left(R^{-1}\right) & \Leftrightarrow(\exists a \in A)\left[(b, a) \in R^{-1}\right] \Leftrightarrow(\exists a \in A)[(a, b) \in R] \\
& \Leftrightarrow b \in \operatorname{Rng}(R),
\end{aligned}
$$

and

$$
\begin{aligned}
a \in \operatorname{Rng}\left(R^{-1}\right) & \Leftrightarrow(\exists b \in B)\left[(b, a) \in R^{-1}\right] \Leftrightarrow(\exists b \in B)[(a, b) \in R] \\
& \Leftrightarrow a \in \operatorname{Dom}(R) .
\end{aligned}
$$

§3．1 Relations

Definition

Let A, B, C be sets，and R be a relation from A to B, S be a relation from B to C ．The composite of R and S is a relation from A to C ， denoted by $S \circ R$ ，given by

$$
S \circ R=\{(a, c) \in A \times C \mid(\exists b \in B)[(a R b) \wedge(b S c)]\} .
$$

We note that $\operatorname{Dom}(S \circ R) \subseteq \operatorname{Dom}(R)$ and it may happen that $\operatorname{Dom}(S \circ R) \subsetneq \operatorname{Dom}(R)$ ．

§3．1 Relations

Example

Let $A=\{1,2,3,4,5\}, B=\{p, q, r, s, t\}$ and $C=\{x, y, z, w\}$ ．Let R be the relation from A to B ：

$$
R=\{(1, p),(1, q),(2, q),(3, r),(4, s)\}
$$

and S be the relation from B to C ：

$$
S=\{(p, x),(q, x),(q, y),(s, z),(t, z)\}
$$

Then $S \circ R=\{(1, x),(1, y),(2, x),(2, y),(4, z)\}$ ．

Example

Let $R=\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y=x+1\}$ and $S=\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y=$ $\left.x^{2}\right\}$ ．Then

$$
\begin{aligned}
& R \circ S=\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y=x^{2}+1\right\} \\
& S \circ R=\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y=(x+1)^{2}\right\}
\end{aligned}
$$

Therefore，$S \circ R \neq R \circ S$ ．

§3．1 Relations

Theorem

Suppose that A, B, C, D are sets，R be a relation from A to B, S be a relation from B to C ，and T be a relation from C to D ．
（a）$\left(R^{-1}\right)^{-1}=R$ ．
（b）$T \circ(S \circ R)=(T \circ S) \circ R($ so composition is associative $)$ ．
（c）$I_{B} \circ R=R$ and $R \circ I_{A}=R$ ．
（d）$(S \circ R)^{-1}=R^{-1} \circ S^{-1}$ ．

Proof of（a）．

（a）holds since

$$
(a, b) \in\left(R^{-1}\right)^{-1} \Leftrightarrow(b, a) \in R^{-1} \Leftrightarrow(a, b) \in R
$$

§3．1 Relations

Proof of（b）

Since $S \circ R$ is a relation from A to $C, T \circ(S \circ R)$ is a relation from $A \rightarrow D$ ．Similarly，$(T \circ S) \circ R$ is also a relation from A to D ．Let $(a, d) \in A \times D$ ．Then

$$
\begin{aligned}
(a, d) & \in T \circ(S \circ R) \\
& \Leftrightarrow(\exists c \in C)[(a, c) \in S \circ R \wedge(c, d) \in T] \\
& \Leftrightarrow(\exists c \in C)(\exists b \in B)[(a, b) \in R \wedge(b, c) \in S \wedge(c, d) \in T] \\
& \Leftrightarrow(\exists(b, c) \in B \times C)[(a, b) \in R \wedge(b, c) \in S \wedge(c, d) \in T] \\
& \Leftrightarrow(\exists b \in B)(\exists c \in C)[(a, b) \in R \wedge(b, c) \in S \wedge(c, d) \in T] \\
& \Leftrightarrow(\exists b \in B)[(a, b) \in R \wedge(b, d) \in T \circ S] \\
& \Leftrightarrow(a, d) \in(T \circ S) \circ R .
\end{aligned}
$$

Therefore，$T \circ(S \circ R)=(T \circ S) \circ R$ ．

§3．1 Relations

Proof of（c）

Let $(a, b) \in A \times B$ be given．Then

$$
(a, b) \in I_{B} \circ R \Leftrightarrow(\exists c \in B)\left[(a, c) \in R \wedge(c, b) \in I_{B}\right] .
$$

Note that $(c, b) \in I_{B}$ if and only if $c=b$ ；thus

$$
(\exists c \in B)\left[(a, c) \in R \wedge(c, b) \in I_{B}\right] \Leftrightarrow(a, b) \in R .
$$

Therefore，$(a, b) \in I_{B} \circ R \Leftrightarrow(a, b) \in R$ ．Similarly，$(a, b) \in R \circ I_{A} \Leftrightarrow$ $(a, b) \in R$ ．

Proof of（d）
Let $(a, c) \in A \times C$ ．Then

$$
\begin{aligned}
(c, a) \in(S \circ R)^{-1} & \Leftrightarrow(a, c) \in S \circ R \\
& \Leftrightarrow(\exists b \in B)[(a, b) \in R \wedge(b, c) \in S] \\
& \Leftrightarrow(\exists b \in B)\left[(c, b) \in S^{-1} \wedge(b, a) \in R^{-1}\right] \\
& \Leftrightarrow(c, a) \in R^{-1} \circ S^{-1} .
\end{aligned}
$$

