基礎數學 MA-1015A

Ching-hsiao Cheng 基礎數學 MA-1015A

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Definition

Two sets A and B are said to be **equal**, denoted by A = B, if $(\forall x)(x \in A \Leftrightarrow x \in B)$; that is $(A \subseteq B) \land (B \subseteq A)$. A set B is said to be a **proper subset** of a set A, denoted by $B \subsetneq A$, if $B \subseteq A$ but $A \neq B$.

• **Proof of** A = B:

Two-part proof of $A = B$	
Proof.	
(i) Prove that $A \subseteq B$ (by any method.)	
(ii) Prove that $B \subseteq A$ (by any method).	
Therefore, $A = B$.	

A (1) > A (2) > A (2) >

Theorem

If A and B are sets with no elements, then A = B.

Proof.

Let *A*, *B* be set. If *A* has no element, then $A = \emptyset$; thus by the fact that empty set is a subset of any set, $A \subseteq B$. Similarly, if *B* has no element, then $B \subseteq A$.

Theorem

For any sets A and B, if $A \subseteq B$ and $A \neq \emptyset$, then $B \neq \emptyset$.

Proof.

Let *A*, *B* be sets, $A \subseteq B$, and $A \neq \emptyset$. Then there is an element *x* such that $x \in A$. By the assumption that $A \subseteq B$, we must have $x \in B$. Therefore, $B \neq \emptyset$.

• • • • • • • • • • • • •

Chapter 2. Sets and Induction

§2.1 Basic Concepts of Set Theory

• Venn diagrams:

イロト イヨト イヨト イヨト

æ

Definition

Let *A* be a set. The *power set* of *A*, denoted by $\mathcal{P}(A)$ or 2^A , is the collocation of all subsets of *A*. In other words, $\mathcal{P}(A) \equiv \{B \mid B \subseteq A\}$.

Example

$$\begin{aligned} & \text{If } A = \{a, b, c, d\}, \text{ then} \\ & \mathcal{P}(A) = \Big\{ \varnothing, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \\ & \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d\} \Big\}. \end{aligned} \\ & \text{We note that } \#(A) = 4 \text{ and } \#(\mathcal{P}(A)) = 16 = 2^{\#(A)}. \end{aligned}$$

イロト イヨト イヨト イヨト

Theorem

If A is a set with n elements, then $\mathcal{P}(A)$ is a set with 2^n elements.

Proof.

Suppose that A is a set with n elements.

- If n = 0, then $A = \emptyset$; thus $\mathcal{P}(A) = \{\emptyset\}$ which shows that $\mathcal{P}(A)$ has $2^0 = 1$ element.
- If n≥ 1, we write A as {x₁, x₂, ..., x_n}. To describe a subset B of A, we need to know for each 1 ≤ i ≤ n whether x_i is in B. For each x_i, there are two possibilities (either x_i ∈ B or x_i ∉ B). Thus, there are exactly 2ⁿ different ways of making a subset of A. Therefore, P(A) has 2ⁿ elements.

Theorem

Let A, B be sets. Then $A \subseteq B$ if and only if $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Proof.

Let A, B be sets.

- (⇒) Suppose that $A \subseteq B$ and $C \in \mathcal{P}(A)$. Then C is a subset of A; thus the fact that $A \subseteq B$ implies that $C \subseteq B$. Therefore, $C \in \mathcal{P}(B)$.
- (\Leftarrow) Suppose that $A \not\subseteq B$. Then there exists $x \in A$ but $x \notin B$. Then $\{x\} \subseteq A$ but $\{x\} \not\subseteq B$ which shows that $\mathcal{P}(A) \not\subseteq \mathcal{P}(B)$.

(ロ) (日) (日) (日) (日)

§2.2 Set Operations

Definition

Let A and B be sets.

- The union of A and B, denoted by $A \cup B$, is the set $\{x \mid (x \in A) \lor (x \in B)\}$.
- **2** The intersection of *A* and *B*, denoted by $A \cap B$, is the set $\{x \mid (x \in A) \land (x \in B)\}$.
- The difference of A and B, denoted by A B, is the set $\{x \mid (x \in A) \land (x \notin B)\}$.

Definition

Two sets A and B are said to be **disjoint** if $A \cap B = \emptyset$.

イロト イヨト イヨト イヨト

§2.2 Set Operations

• Venn diagrams:

§2.2 Set Operations

Theorem

Let A, B and C be sets. Then (a) $A \subseteq A \cup B$; (b) $A \cap B \subseteq A$; (c) $A \cap \emptyset = \emptyset$; (d) $A \cup \emptyset = A$; (e) $A \cap A = A$; (f) $A \cup A = A$; (g) $A \setminus \emptyset = A$; (h) $\emptyset \setminus A = \emptyset$; (i) $A \cup B = B \cup A$; (j) $A \cap B = B \cap A$; (commutative laws) (k) $A \cup (B \cup C) = (A \cup B) \cup C;$ (ℓ) $A \cap (B \cap C) = (A \cap B) \cap C;$ (associative laws) (o) $A \subseteq B \Leftrightarrow A \cup B = B$; (p) $A \subseteq B \Leftrightarrow A \cap B = A$; (q) $A \subseteq B \Rightarrow A \cup C = B \cup C$; (r) $A \subseteq B \Rightarrow A \cap C \subseteq B \cap C$.

Note: $(A \cup B) \cap C \neq A \cup (B \cap C)$ in general!

<ロ> <四> <四> <四> <三</p>