基礎數學 MA－1015A

§2．1 Basic Concepts of Set Theory

Definition

Two sets A and B are said to be equal，denoted by $A=B$ ，if $(\forall x)(x \in A \Leftrightarrow x \in B)$ ；that is $(A \subseteq B) \wedge(B \subseteq A)$ ．A set B is said to be a proper subset of a set A ，denoted by $B \subsetneq A$ ，if $B \subseteq A$ but $A \neq B$ ．
－Proof of $A=B$ ：

Two－part proof of $A=B$
Proof．
（i）Prove that $A \subseteq B$（by any method．）
（ii）Prove that $B \subseteq A$（by any method）．
Therefore，$A=B$ ．

§2．1 Basic Concepts of Set Theory

Theorem

If A and B are sets with no elements，then $A=B$ ．

Proof．

Let A, B be set．If A has no element，then $A=\varnothing$ ；thus by the fact that empty set is a subset of any set，$A \subseteq B$ ．Similarly，if B has no element，then $B \subseteq A$ ．

Theorem

For any sets A and B ，if $A \subseteq B$ and $A \neq \varnothing$ ，then $B \neq \varnothing$ ．

Proof．

Let A, B be sets，$A \subseteq B$ ，and $A \neq \varnothing$ ．Then there is an element x such that $x \in A$ ．By the assumption that $A \subseteq B$ ，we must have $x \in B$ ．Therefore，$B \neq \varnothing$ ．

§2．1 Basic Concepts of Set Theory

－Venn diagrams：

§2．1 Basic Concepts of Set Theory

Definition

Let A be a set．The power set of A ，denoted by $\mathcal{P}(A)$ or 2^{A} ，is the colloection of all subsets of A ．In other words， $\mathcal{P}(A) \equiv\{B \mid B \subseteq A\}$ ．

Example

If $A=\{a, b, c, d\}$ ，then

$$
\begin{aligned}
\mathcal{P}(A)=\{ & \varnothing,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\} \\
& \{c, d\},\{a, b, c\},\{a, b, d\},\{a, c, d\},\{b, c, d\},\{a, b, c, d\}\} .
\end{aligned}
$$

We note that $\#(A)=4$ and $\#(\mathcal{P}(A))=16=2^{\#(A)}$ ．

§2．1 Basic Concepts of Set Theory

Theorem

If A is a set with n elements，then $\mathcal{P}(A)$ is a set with 2^{n} elements．

Proof．

Suppose that A is a set with n elements．
（1）If $n=0$ ，then $A=\varnothing$ ；thus $\mathcal{P}(A)=\{\varnothing\}$ which shows that $\mathcal{P}(A)$ has $2^{0}=1$ element．
（2）If $n \geqslant 1$ ，we write A as $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ ．To describe a subset B of A ，we need to know for each $1 \leqslant i \leqslant n$ whether x_{i} is in B ． For each x_{i} ，there are two possibilities（either $x_{i} \in B$ or $x_{i} \notin B$ ）． Thus，there are exactly 2^{n} different ways of making a subset of A ．Therefore， $\mathcal{P}(A)$ has 2^{n} elements．

§2．1 Basic Concepts of Set Theory

Theorem

Let A, B be sets．Then $A \subseteq B$ if and only if $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ ．

Proof．

Let A, B be sets．
(\Rightarrow) Suppose that $A \subseteq B$ and $C \in \mathcal{P}(A)$ ．Then C is a subset of A ；thus the fact that $A \subseteq B$ implies that $C \subseteq B$ ．Therefore， $C \in \mathcal{P}(B)$ ．
(\Leftarrow) Suppose that $A \nsubseteq B$ ．Then there exists $x \in A$ but $x \notin B$ ．Then $\{x\} \subseteq A$ but $\{x\} \nsubseteq B$ which shows that $\mathcal{P}(A) \nsubseteq \mathcal{P}(B)$ ．

§2．2 Set Operations

Definition

Let A and B be sets．
（1）The union of A and B ，denoted by $A \cup B$ ，is the set

$$
\{x \mid(x \in A) \vee(x \in B)\} .
$$

（2）The intersection of A and B ，denoted by $A \cap B$ ，is the set

$$
\{x \mid(x \in A) \wedge(x \in B)\}
$$

（3）The difference of A and B ，denoted by $A-B$ ，is the set

$$
\{x \mid(x \in A) \wedge(x \notin B)\} .
$$

Definition

Two sets A and B are said to be disjoint if $A \cap B=\varnothing$ ．

§2．2 Set Operations

－Venn diagrams：

$A \cup B$

$A-B$

$A \cap B$

Disjoint sets A and B

§2．2 Set Operations

Theorem

Let A, B and C be sets．Then
（a）$A \subseteq A \cup B$ ；
（b）$A \cap B \subseteq A$ ；
（c）$A \cap \varnothing=\varnothing$ ；
（d）$A \cup \varnothing=A$ ；
（e）$A \cap A=A$ ；
（f）$A \cup A=A$ ；
（g）$A \backslash \varnothing=A$ ；
（h）$\varnothing \backslash A=\varnothing$ ；
（i）$A \cup B=B \cup A$ ；
（j）$A \cap B=B \cap A$ ；$\}$
（commutative laws）
$\left.\begin{array}{l}\text {（k）} A \cup(B \cup C)=(A \cup B) \cup C ; \\ (\ell) A \cap(B \cap C)=(A \cap B) \cap C ;\end{array}\right\} \quad$（associative laws）
$\left.\begin{array}{l}\text {（m）} A \cap(B \cup C)=(A \cap B) \cup(A \cap C) ; \\ \text {（n）} A \cup(B \cap C)=(A \cup B) \cap(A \cup C) ;\end{array}\right\} \quad$（distributive laws）
（o）$A \subseteq B \Leftrightarrow A \cup B=B$ ；
（p）$A \subseteq B \Leftrightarrow A \cap B=A$ ；
（q）$A \subseteq B \Rightarrow A \cup C=B \cup C$ ；
（r）$A \subseteq B \Rightarrow A \cap C \subseteq B \cap C$ ．
Note：$(A \cup B) \cap C \neq A \cup(B \cap C)$ in general！

