Exercise Problem Sets 14

May. 19. 2023

In the following problems, H denotes the Heaviside function defined by

$$
H(x)=\mathbf{1}_{[0, \infty)}(x)= \begin{cases}0 & \text { if } x<0 \\ 1 & \text { if } x \geqslant 0\end{cases}
$$

Problem 1. 1. Let $a>0$ be a constant. Find the Fourier transform of the function $f(x)=$ $e^{-a x} H(x)$.
2. Find the Fourier transform of the functions $g(x)=\frac{1}{2-3 i x-x^{2}}$ by
(a) Rewriting g as the sum of two fractions and apply the result in part 1.
(b) Convolution.

Problem 2. Find the Fourier transform of the function $f(x)=\left\{\begin{array}{cl}1-x^{2} & \text { if }|x| \leqslant 1, \\ 0 & \text { if }|x|>1,\end{array}\right.$ and hence evaluate

$$
\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos \frac{x}{2} d x .
$$

Problem 3. Find the Fourier transform of the function $f(x)=\left\{\begin{array}{cl}a-|x| & \text { if }|x| \leqslant a, \\ 0 & \text { if }|x|>a,\end{array}\right.$ and hence prove that

$$
\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=\frac{\pi}{2}
$$

Problem 4. Solve the integral equation $\int_{0}^{\infty} f(x) \cos (\lambda x) d x=\left\{\begin{array}{cl}1-\lambda & \text { if } 0 \leqslant \lambda \leqslant 1, \\ 0 & \text { if } \lambda>1 .\end{array}\right.$ Hence deduce that $\int_{0}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t=\frac{\pi}{2}$.

Problem 5. 1. Let $\alpha>0$. Compute the Fourier transform of the function

$$
f_{\alpha}(x)= \begin{cases}e^{-\alpha x} & \text { if } x \geqslant 0 \\ -e^{\alpha x} & \text { if } x<0\end{cases}
$$

2. Show that $\lim _{\alpha \rightarrow 0^{+}} \hat{f}_{\alpha}(\xi)=\widehat{\operatorname{sgn}}(\xi)$; that is,

$$
\lim _{\alpha \rightarrow 0^{+}}\left\langle\widehat{f}_{\alpha}, \phi\right\rangle=\langle\widehat{\operatorname{sgn}}(\xi), \phi\rangle \quad \forall \phi \in \mathscr{S}\left(\mathbb{R}^{n}\right),
$$

where sgn is the sign function given by

$$
\operatorname{sgn}(x)=\left\{\begin{array}{cl}
1 & \text { if } x>0 \tag{0.1}\\
-1 & \text { if } x<0 \\
0 & \text { if } x=0
\end{array}\right.
$$

3. Find the Fourier transform of the Heaviside function H using $H=\frac{1}{2}(1+\operatorname{sgn})$.
4. Use the Fourier transform of sgn to compute the Fourier transform of the following functions:
(a) $f_{1}(t)=\frac{1}{t}$.
(b) $f_{2}(t)=|t|$.

Use (a) and (b) to compute the Fourier transform of
(c) $f_{3}(t)=-\frac{1}{t^{2}}$.
(d) $f_{4}(t)=\frac{2}{t^{2}}$.

Problem 6. In this problem we discuss the derivative of tempered distributions. Complete the following.

1. Show that

$$
\left\langle\frac{\partial f}{\partial x_{j}}, g\right\rangle=-\left\langle f, \frac{\partial g}{\partial x_{j}}\right\rangle \quad \forall f, g \in \mathscr{S}\left(\mathbb{R}^{n}\right) .
$$

This leads to the definition of the derivatives of tempered distributions: Let $T \in \mathscr{S}\left(\mathbb{R}^{n}\right)^{\prime}$ be a tempered distribution. The partial derivative of T w.r.t. x_{j}, denoted by $\frac{\partial T}{\partial x_{j}}$, is a tempered distribution defined by

$$
\left\langle\frac{\partial T}{\partial x_{j}}, \phi\right\rangle=-\left\langle T, \frac{\partial \phi}{\partial x_{j}}\right\rangle \quad \forall \phi \in \mathscr{S}\left(\mathbb{R}^{n}\right) .
$$

Verify that $\frac{\partial T}{\partial x_{j}}$ is indeed a tempered distribution; that is, show that there exists a sequence $\left\{C_{k}\right\}_{k=1}^{\infty}$ such that

$$
\left|\left\langle\frac{\partial T}{\partial x_{j}}, \phi\right\rangle\right| \leqslant C_{k} p_{k}(\phi) \quad \forall \phi \in \mathscr{S}\left(\mathbb{R}^{n}\right) \text { and } k \gg 1 .
$$

2. Show that for $1 \leqslant j \leqslant n$,

$$
\mathscr{F}_{x}\left[\frac{\partial T}{\partial x_{j}}\right](\xi)=i \xi_{j} \widehat{T}(\xi) \quad \text { and } \quad \frac{\partial}{\partial x_{j}} \widehat{T}(\xi)=-i \mathscr{F}_{x}[x T(x)](\xi)
$$

or to be more precise,

$$
\left\langle\widehat{\frac{\partial T}{\partial x_{j}}}, \phi\right\rangle=\left\langle\widehat{T}(\xi), i \xi_{j} \phi(\xi)\right\rangle \quad \forall \phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)
$$

and

$$
\left\langle\frac{\partial}{\partial \xi_{j}} \widehat{T}(\xi), \phi(\xi)\right\rangle=\langle T(x),-i x \widehat{\phi}(x)\rangle \quad \forall \phi \in \mathscr{S}\left(\mathbb{R}^{n}\right) .
$$

In other words, the Fourier transform of derivatives of tempered distributions still obeys Lemma 9.9 and 9.11 in the lecture note.

Problem 7. Let sgn : $\mathbb{R} \rightarrow \mathbb{R}$ be the sign function given by (0.1). Then clearly sgn is a tempered distribution since

$$
|\langle\operatorname{sgn}, \phi\rangle| \leqslant\|\phi\|_{L^{1}(\mathbb{R})} \leqslant \pi p_{2}(\phi) \quad \forall \phi \in \mathscr{S}(\mathbb{R}) .
$$

Show that $\frac{d}{d x} \operatorname{sgn}(x)=2 \delta$ in $\mathscr{S}(\mathbb{R})^{\prime}$, where the derivative of tempered distributions is defined in Problem 6 and δ is the Dirac delta function.

Problem 8. Compute the Fourier transform of the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(x)=|x|^{\alpha}$, where $-n<\alpha<0$, by the following procedure.

1. Show that $f \notin L^{1}\left(\mathbb{R}^{n}\right)$.
2. Recall that the Gamma function $\Gamma:(0, \infty) \rightarrow \mathbb{R}$ defined by $\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$. Show that

$$
|x|^{\alpha}=\frac{1}{\Gamma\left(-\frac{\alpha}{2}\right)} \int_{0}^{\infty} s^{-\frac{\alpha}{2}-1} e^{-s|x|^{2}} d s \quad \forall x \neq 0 .
$$

3. Find that Fourier transform of f.
4. Find the Fourier transform of the function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $g(x)=x_{1}|x|^{\alpha}$, where x_{1} is the first component of x and $-n-2<\alpha<-2$.

Hint: 3. Compute $\left.\left.\langle | x\right|^{\alpha}, \widehat{\phi}(x)\right\rangle$ by applying Fubini's Theorem several times.
4. Note that $g(x)=\frac{1}{\alpha+2} \frac{\partial}{\partial x_{1}}|x|^{\alpha+2}$ so that you can apply the results above. See Problem 6 for the Fourier transform of derivatives of tempered distributions.
Problem 9. Let $f \in L^{1}(\mathbb{R})$. Show that the function $y=\int_{-\infty}^{x} f(t) d t$ can be written as the convolution of f and a function $\phi \in L_{\text {loc }}^{1}(\mathbb{R})$.

Problem 10. In this problem we use symbolic computation to find the Fourier transform of the function

$$
f(x)=\left\{\begin{array}{cl}
\frac{\sin (\omega x)}{x} & \text { if } x \neq 0 \\
\omega & \text { if } x=0
\end{array}\right.
$$

without knowing that it is the Fourier transform of the function $y=\sqrt{\frac{\pi}{2}} \mathbf{1}_{[-\omega, \omega]}(x)$. Complete the following.

1. Note that $f \notin L^{1}(\mathbb{R})$ but $f \in \mathscr{S}\left(\mathbb{R}^{n}\right)^{\prime}$. Therefore, $\widehat{f} \in \mathscr{S}(\mathbb{R})$. Find the derivative of \widehat{f}, where the derivatives of tempered distributions is given in Problem 6.
2. Suppose that you can use the Fundamental Theorem of Calculus so that

$$
\widehat{f}(\xi)-\widehat{f}(0)=\int_{0}^{\xi} \hat{f}^{\prime}(t) d t
$$

Note that in previous exercise you are asked to show that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$. Use this fact and treat $\delta_{ \pm \omega}$ as the evaluation operation at $\pm \omega$ to find $\hat{f}(\xi)$ (for $\left.\xi \neq \pm \omega\right)$.
Hint: 1. Recall that we have shown that $\mathscr{F}_{x}[\sin (\omega x)](\xi)=\frac{\sqrt{2 \pi}}{2 i}\left(\delta_{\omega}-\delta_{-\omega}\right)$.

Problem 11. Let ω be a positive real number, and $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{array}{cl}
\frac{\sin (\omega|x|)}{|x|} & \text { if } x \neq 0 \\
\omega & \text { if } x=0
\end{array}\right.
$$

where $|x|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}$ if $x=\left(x_{1}, x_{2}, x_{3}\right)$. In this problem we are concerned with the Fourier transform of f. Complete the following.

1. Show that $f \in \mathscr{S}\left(\mathbb{R}^{3}\right)^{\prime}$.
2. Show that the Fourier transform of f is given by

$$
\langle\widehat{f}, \varphi\rangle=\sqrt{\frac{\pi}{2}} \frac{1}{\omega} \int_{\partial B(0, \omega)} \varphi d S
$$

for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{3}\right)$, where $\int_{\partial B(0, \omega)} \varphi d S$ is the surface integral of φ on the sphere $\partial B(0, \omega)$ defined by

$$
\int_{\partial B(0, \omega)} \varphi d S \equiv \int_{0}^{\pi} \int_{0}^{2 \pi} \varphi(\omega \cos \theta \sin \phi, \omega \sin \theta \sin \phi, \omega \cos \phi) \omega^{2} \sin \phi d \theta d \phi
$$

Hint of 2: You can show part 2 through the following procedures:
Step 1: By the definition of the Fourier transform of the tempered distributions,

$$
\langle\widehat{f}, \varphi\rangle=\langle f, \hat{\varphi}\rangle=\lim _{m \rightarrow \infty} \int_{B(0, m)} f(x)\left(\frac{1}{\sqrt{2 \pi}^{3}} \int_{\mathbb{R}^{3}} \varphi(\xi) e^{-i x \cdot \xi} d \xi\right) d x
$$

and the Fubini Theorem implies that

$$
\langle\hat{f}, \varphi\rangle=\frac{1}{\sqrt{2 \pi}^{3}} \lim _{m \rightarrow \infty} \int_{\mathbb{R}^{3}}\left(\int_{B(0, m)} f(x) e^{-i x \cdot \xi} d x\right) \varphi(\xi) d \xi
$$

We focus on the inner integral first. Show that for each 3×3 orthonormal matrix O,

$$
\int_{B(0, m)} f(x) e^{-i x \cdot \xi} d x=\int_{B(0, m)} \frac{\sin (\omega|y|)}{|y|} e^{-i\left(\mathrm{O}^{\mathrm{T}} \xi\right) \cdot y} d y
$$

Step 2: For each $\xi \in \mathbb{R}^{3}$, choose a 3×3 orthonormal matrix O such that $\mathrm{O}^{\mathrm{T}} \xi=(0,0,|\xi|)$. Using the spherical coordinate $y=(\rho \cos \theta \sin \phi, \rho \sin \theta \sin \phi, \rho \cos \phi)$ to show that

$$
\int_{B(0, m)} f(x) e^{-i x \cdot \xi} d x=\int_{0}^{m} \frac{2 \sin (\omega \rho) \sin (|\xi| \rho)}{|\xi|} d \rho
$$

so that we conclude that

$$
\langle\hat{f}, \varphi\rangle=\frac{1}{\sqrt{2 \pi}^{3}} \lim _{m \rightarrow \infty} \int_{\mathbb{R}^{3}}\left(\int_{0}^{m} \frac{2 \sin (\omega \rho) \sin (|\xi| \rho)}{|\xi|} \varphi(\xi) d \rho\right) d \xi .
$$

Step 3: For each $r>0$, define $\psi(r)$ as the surface integral of φ on $\partial B(0, r)$; that is,

$$
\psi(r)=\int_{\partial B(0, r)} \varphi d S \equiv \int_{0}^{\pi} \int_{0}^{2 \pi} \varphi(r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos \phi) r^{2} \sin \phi d \theta d \phi
$$

Using the spherical coordinate $\xi=(r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos \phi)$ to show that

$$
\langle\widehat{f}, \varphi\rangle=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty}\left(\int_{0}^{\infty} \sin (\omega \rho) \sin (r \rho) \frac{2 \psi(r)}{r} d r\right) d \rho .
$$

Step 4: Apply the conclusion in Problem 3 of Exercise 12.
Problem 12. 1. Show that the function $R: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\mathrm{R}(x)= \begin{cases}x & \text { if } x \geqslant 0 \\ 0 & \text { otherwise }\end{cases}
$$

is a tempered distribution.
2. Let T be a generalized function defined by

$$
\langle T, \phi\rangle=\lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R} \backslash[-\epsilon, \epsilon]} \frac{\phi(x)}{x} d x=\lim _{\epsilon \rightarrow 0^{+}}\left(\int_{-\infty}^{-\epsilon}+\int_{\epsilon}^{\infty}\right) \frac{\phi(x)}{x} d x \quad \forall \phi \in \mathscr{C}_{c}^{\infty}(\mathbb{R}) .
$$

Show that $T \in \mathscr{S}(\mathbb{R})^{\prime}$.
3. Let H be the Heaviside function given by

$$
H(x)= \begin{cases}0 & \text { if } x \leqslant 0, \\ 1 & \text { if } x>0 .\end{cases}
$$

Show that $\hat{H}=\frac{-i}{\sqrt{2 \pi}} T+\sqrt{\frac{\pi}{2}} \delta$, here δ is the Dirac delta function.
Hint: 3. Let $G(x)=\exp \left(-\frac{x^{2}}{2}\right)$. For each $\phi \in \mathscr{S}(\mathbb{R})$, define $\psi=\phi-\phi(0) G$ (which belongs to $\mathscr{S}(\mathbb{R}))$. Use the identity

$$
\langle\hat{H}, \phi\rangle=\langle H, \widehat{\psi}\rangle-\phi(0)\langle H, \widehat{G}\rangle
$$

to make the conclusion.
Problem 13. The Hilbert transform of a function $f: \mathbb{R} \rightarrow \mathbb{R}$, denoted by $\mathscr{H}[f]$, is a function defined (formally) by

$$
\mathscr{H}[f](x)=\frac{1}{\pi} \lim _{\epsilon \rightarrow 0^{+}} \int_{|y-x|>\epsilon} \frac{f(y)}{x-y} d y,
$$

1. Show that $\mathscr{H}[f]$ is well-defined if $f \in \mathscr{S}(\mathbb{R})$.
2. Show that $\mathscr{F}[\mathscr{H}[f]](\xi)=i \operatorname{sgn}(\xi) \hat{f}(\xi)$ for all $f \in \mathscr{S}(\mathbb{R})$.
3. Show that $\|\mathscr{H}[f]\|_{L^{2}(\mathbb{R})}=\|f\|_{L^{2}(\mathbb{R})}$ for all $f \in \mathscr{S}(\mathbb{R})$, where $\|g\|_{L^{2}(\mathbb{R})}=\left(\int_{\mathbb{R}}|g(x)|^{2} d x\right)^{\frac{1}{2}}$.

Hint: Consider the tempered distribution T defined in Problem 12 by

$$
\langle T, \phi\rangle=\lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R} \backslash[-\epsilon, \epsilon]} \frac{\phi(x)}{x} d x=\lim _{\epsilon \rightarrow 0^{+}}\left(\int_{-\infty}^{-\epsilon}+\int_{\epsilon}^{\infty}\right) \frac{\phi(x)}{x} d x \quad \forall \phi \in \mathscr{S}(\mathbb{R}) .
$$

1. Show that $\mathscr{H}[f]=\left\langle T, \tau_{x} \tilde{f}\right\rangle$ for all $f \in \mathscr{S}(\mathbb{R})$, where τ_{x} is a translation operator.
2. Show that the tempered distribution S defined by $\langle S, \phi\rangle=\langle T(x), x \phi(x)\rangle$ is indeed the same as the tempered distribution

$$
\phi \mapsto \int_{\mathbb{R}} \phi(x) d x=\langle 1, \phi\rangle .
$$

Use Problem 6 to show that $\frac{d}{d \xi} \widehat{T}(\xi)=-\sqrt{\frac{\pi}{2}} i \frac{d}{d \xi} \operatorname{sgn}(\xi)$, where sgn is given in Problem 7. Use the fact that $\frac{d T}{d x}=0$ if and only if there exists C such that $\langle T, \phi\rangle=\langle C, \phi\rangle$ for all $\phi \in \mathscr{S}(\mathbb{R})$ to conclude that

$$
\widehat{T}(\xi)=-\sqrt{\frac{\pi}{2}} i \operatorname{sgn}(\xi)+C
$$

for some constant C. Find the constant C and also show that $\mathscr{H}[f]=\frac{1}{\pi} T * f=\sqrt{\frac{2}{\pi}} T * f$.
3. Use the Plancherel formula.

