Exercise Problem Sets 3

Mar. 03. 2023

Problem 1. Let $A=[a, b] \times[c, d]$ be a rectangle in \mathbb{R}^{2}, and $f: A \rightarrow \mathbb{R}$ be Riemann integrable. Show that the sets

$$
\left\{x \in[a, b] \mid \int_{c}^{d} f(x, y) d y \neq \bar{\int}_{c}^{d} f(x, y) d y\right\} \quad \text { and } \quad\left\{y \in[c, d] \mid \int_{a}^{b} f(x, y) d x \neq \bar{\int}_{a}^{b} f(x, y) d x\right\}
$$

have measure zero (in \mathbb{R}^{1}).
Proof. It suffices to show the former case. Define

$$
g(x)=\bar{\int}_{c}^{d} f(x, y) d y-\int_{c}^{d} f(x, y) d y .
$$

Then g is non-negative on $[a, b]$. Moreover, the integrability of f implies that g is Rimenann integrable on $[a, b]$ and the Fubini theorem implies that $\int_{a}^{b} g(x) d x=0$. Therefore, Part 2 of Theorem 6.45 shows that the set $\{x \in[a, b] \mid g(x) \neq 0\}$ has measure zero.

Problem 2. Define a set $S \subseteq[0,1] \times[0,1]$ by

$$
S=\left\{\left.\left(\frac{p}{m}, \frac{k}{m}\right) \in[0,1] \times[0,1] \right\rvert\, m, p, k \in \mathbb{N}, \operatorname{gcd}(m, p)=1 \text { and } 1 \leqslant k \leqslant m-1\right\} .
$$

Show that

$$
\int_{0}^{1}\left(\int_{0}^{1} \mathbf{1}_{S}(x, y) d y\right) d x=\int_{0}^{1}\left(\int_{0}^{1} \mathbf{1}_{S}(x, y) d x\right) d y=0
$$

but $\mathbf{1}_{S}$ is not Riemann integrable on $[0,1] \times[0,1]$.
Proof. Note that for each $x \in[0,1]$, then $\mathbf{1}_{S}(x, y) \neq 0$ for only finitely many $y \in[0,1]$. Therefore, for each $x \in[0,1], \mathbf{1}_{S}(x, \cdot)$ is Riemann integrable on $[0,1]$ and

$$
\int_{0}^{1} \mathbf{1}_{S}(x, y) d y=0
$$

Similarly, for each $y \in[0,1]$, then $\mathbf{1}_{S}(x, y) \neq 0$ for only finitely many $x \in[0,1]$; thus for each $y \in[0,1]$, $\mathbf{1}_{S}(x, \cdot)$ is Riemann integrable on $[0,1]$ and

$$
\int_{0}^{1} \mathbf{1}_{S}(x, y) d x=0 .
$$

Therefore,

$$
\int_{0}^{1}\left(\int_{0}^{1} \mathbf{1}_{S}(x, y) d y\right) d x=\int_{0}^{1}\left(\int_{0}^{1} \mathbf{1}_{S}(x, y) d x\right) d y=0
$$

However, for each partition \mathcal{P} of $[0,1] \times[0,1]$, we have $\Delta \cap S \neq \varnothing$ for all $\Delta \in \mathcal{P}$; thus $U\left(\mathbf{1}_{S}, \mathcal{P}\right)=1$ for all partition \mathcal{P} of $[0,1] \times[0,1]$. Therefore,

$$
\int_{A \times B} \mathbf{1}_{S}(x, y) d(x, y)=1
$$

which, by the Fubini Theorem, implies that $\mathbf{1}_{S}$ is not Riemann integrable on $[0,1] \times[0,1]$.

Problem 3. Let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be given by

$$
f(x, y)=\left\{\begin{array}{cl}
2^{2 n} & \text { if }(x, y) \in\left[2^{-n}, 2^{-n+1}\right) \times\left[2^{-n}, 2^{-n+1}\right), n \in \mathbb{N} \\
-2^{2 n+1} & \text { if }(x, y) \in\left[2^{-n}, 2^{-n+1}\right) \times\left[2^{-n-1}, 2^{-n}\right), n \in \mathbb{N} \\
0 & \text { otherwise }
\end{array}\right.
$$

1. Show that $\int_{0}^{1} f(x, y) d x=0$ for all $y \in\left[0, \frac{1}{2}\right)$.
2. Show that $\int_{0}^{1} f(x, y) d y=0$ for all $x \in[0,1)$.
3. Justify if the iterated (improper) integrals $\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y$ and $\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x$ are identical.
Proof. 1. Since $f(x, 0)=0$ for all $x \in[0,1]$, we have $\int_{0}^{1} f(x, 0) d x=0$. Suppose that $y \in\left(0, \frac{1}{2}\right)$. Then $y \in\left[2^{-n}, 2^{-n+1}\right)$ for a unique natural number $n \geqslant 2$. In this case,

$$
f(x, y)=\left\{\begin{array}{cl}
2^{2 n} & \text { if } x \in\left[2^{-n}, 2^{-n+1}\right) \\
-2^{2 n-1} & \text { if } x \in\left[2^{-n+1}, 2^{-n+2}\right) \\
0 & \text { otherwise }
\end{array}\right.
$$

so that

$$
\begin{aligned}
\int_{0}^{1} f(x, y) d x & =\int_{\left[2^{-n}, 2^{-n+1}\right)} 2^{2 n} d x+\int_{\left[2^{-n+1}, 2^{-n+2}\right)}-2^{2 n-1} d x \\
& =2^{2 n}\left(2^{-n+1}-2^{-n}\right)-2^{2 n-1}\left(2^{-n+2}-2^{-n+1}\right)=0
\end{aligned}
$$

2. Since $f(0, y)$ for all $y \in[0,1]$, we have $\int_{0}^{1} f(0, y) d y=0$. Suppose tat $x \in(0,1)$. Then $x \in\left[2^{-n}, 2^{-n+1}\right)$ for a unique $n \in \mathbb{N}$. In this case,

$$
f(x, y)=\left\{\begin{array}{cl}
2^{2 n} & \text { if } y \in\left[2^{-n}, 2^{-n+1}\right), n \in \mathbb{N} \\
-2^{2 n+1} & \text { if } y \in\left[2^{-n-1}, 2^{-n}\right), n \in \mathbb{N} \\
0 & \text { otherwise }
\end{array}\right.
$$

so that

$$
\begin{aligned}
\int_{0}^{1} f(x, y) d y & =\int_{\left[2^{-n}, 2^{-n+1}\right)} 2^{2 n} d x+\int_{\left[2^{-n-1}, 2^{-n}\right)}-2^{2 n+1} d x \\
& =2^{2 n}\left(2^{-n+1}-2^{-n}\right)-2^{2 n+1}\left(2^{-n}-2^{-n-1}\right)=0
\end{aligned}
$$

3. By 2 , we immediately conclude that

$$
\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x=0
$$

On the other hand, note that if $y \in\left[\frac{1}{2}, 1\right)$, then $f(x, y)=\left\{\begin{array}{ll}4 & \text { if } x \in\left[\frac{1}{2}, 1\right), \\ 0 & \text { otherwise, }\end{array}\right.$ so that

$$
\int_{0}^{1} f(x, y) d x=\int_{\frac{1}{2}}^{1} 4 d x=2
$$

Therefore,

$$
\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y=\int_{0}^{\frac{1}{2}} \int_{0}^{1} f(x, y) d x d y+\int_{\frac{1}{2}}^{1} \int_{0}^{1} f(x, y) d x d y=\int_{\frac{1}{2}}^{1} 2 d y=1
$$

which shows that $\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y \neq \int_{0}^{1} \int_{0}^{1} f(x, y) d y d x$ for this particular f.
Problem 4. Let $A=[a, b]$ be a closed interval in \mathbb{R}, and $f_{k}: A \rightarrow \mathbb{R}$ be a non-decreasing sequence (that is, $f_{k} \leqslant f_{k+1}$ for all $k \in \mathbb{N}$) of continuous functions such that

$$
\lim _{k \rightarrow \infty} f_{k}(x)=f(x) \quad \forall x \in A
$$

for some continuous function $f: A \rightarrow \mathbb{R}$. Show that

$$
\lim _{k \rightarrow \infty} \sup _{x \in A}\left|f_{k}(x)-f(x)\right|=0
$$

If we do not assume that f is continuous or if A is replaced by other kind of intervals, is the conclusion still true?
Hint: Mimic the proof of Lemma 6.64 in the lecture note.
Proof. Suppose the contrary that there exist $\varepsilon>0$ such that

$$
\limsup _{k \rightarrow \infty} \sup _{x \in A}\left|f_{k}(x)-f(x)\right| \geqslant 2 \varepsilon
$$

Then there exists $1 \leqslant k_{1}<k_{2}<\cdots$ such that

$$
\max _{x \in A}\left|f_{k_{j}}(x)-f(x)\right|=\sup _{x \in A}\left|f_{k_{j}}(x)-f(x)\right|>\varepsilon .
$$

In other words, for some $\varepsilon>0$ and strictly increasing sequence $\left\{k_{j}\right\}_{j=1}^{\infty} \subseteq \mathbb{N}$,

$$
F_{j} \equiv\left\{x \in A \mid f(x)-f_{k_{j}}(x) \geqslant \varepsilon\right\} \neq \varnothing \quad \forall j \in \mathbb{N} .
$$

Note that since $f_{k} \leqslant f_{k+1}$ for all $k \in \mathbb{N}, F_{j} \supseteq F_{j+1}$ for all $j \in \mathbb{N}$. Moreover, by the continuity of f_{k} and f, F_{j} is a closed subset of A; thus F_{j} is compact. Therefore, the nested set property for compact sets (see Problem 4 of Exercise 9 from the previous semester) implies that $\bigcap_{j=1}^{\infty} F_{j}$ is non-empty. In other words, there exists $x \in A$ such that $f(x)-f_{k_{j}}(x) \geqslant \varepsilon$ for all $j \in \mathbb{N}$ which contradicts to the fact that $\lim _{k \rightarrow \infty} f_{k}(x)=f(x)$ for all $x \in A$.

If f is not necessarily continuous, the conclusion is false. A counter-example is given as follows. Let $A=[0,1]$ and $f_{k}(x)=x^{k}$. Then we find that

$$
\lim _{k \rightarrow \infty} f_{k}(x)=f(x) \quad \forall x \in A
$$

where $f:[0,1] \rightarrow \mathbb{R}$ is given by

$$
f(x)= \begin{cases}0 & \text { if } x \in[0,1) \\ 1 & \text { if } x=1\end{cases}
$$

Clearly f is not a continuous function on $[0,1]$. Moreover, we have

$$
\sup _{x \in A}\left|f_{k}(x)-f(x)\right|=\sup _{x \in[0,1)}\left|f_{k}(x)\right|=\sup _{x \in[0,1)} x^{k}=1
$$

which shows that $\lim _{k \rightarrow \infty} \sup _{x \in A}\left|f_{k}(x)-f(x)\right| \neq 0$.
Problem 5. Let $f:[a, b] \times[c, d] \rightarrow \mathbb{R}$ be a continuous function, and $F(x)=\int_{c}^{d} f(x, y) d y$. Use the bounded convergence theorem to show that F is continuous on $[a, b]$.

Proof. Let $\left\{x_{k}\right\}_{k=1}^{\infty} \subseteq A$ be a sequence converging to $c \in[a, b]$, and define $g_{n}(y)=\sup _{k \geqslant n} f\left(x_{k}, y\right)$. By the continuity of $f, \lim _{n \rightarrow \infty} g_{n}(y)=\limsup _{k \rightarrow \infty} f\left(x_{k}, y\right)=f(c, y)$ for all $y \in[c, d]$; thus $\left\{g_{n}\right\}_{n=1}^{\infty}$ converges pointwise to $f(a, y)$. Since $\left\{g_{n}\right\}_{n=1}^{\infty}$ is a decreasing sequence, Theorem ?? implies that

$$
\lim _{n \rightarrow \infty} \int_{[c, d]}\left(g_{n}(y)-f(a, y)\right) d y=0
$$

thus by the fact that $f\left(x_{n}, y\right) \leqslant g_{n}(y)$ for all $y \in[c, d]$;

$$
\limsup _{n \rightarrow \infty} \int_{c}^{d}\left(f\left(x_{n}, y\right)-f(a, y)\right) d y \leqslant \lim _{n \rightarrow \infty} \int_{[c, d]}\left(g_{n}(y)-f(a, y)\right) d y=0 .
$$

As a consequence, $\limsup _{n \rightarrow \infty} F\left(x_{n}\right) \leqslant F(a)$. Since the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ can be chosen arbitrarily, we conclude that $\limsup _{x \rightarrow a} F(x) \leqslant F(a)$.

On the other hand, defining $h_{n}(y)=\inf _{k \geqslant n}^{x \rightarrow a} f\left(x_{k}, y\right)$, we have $h_{n} \leqslant h_{n+1}$ for all $n \in \mathbb{N}$ and $\left\{h_{n}\right\}_{n=1}^{\infty}$ converges pointwise to $f(a, y)$ on B; thus

$$
\lim _{n \rightarrow \infty} \int_{[c, d]}\left(f(a, y)-h_{n}(y)\right) d y=0
$$

By the fact that $h_{n}(y) \leqslant f\left(x_{n}, y\right)$ for all $y \in[c, d]$, we find that

$$
\limsup _{n \rightarrow \infty} \int_{c}^{d}\left(f(a, y)-f\left(x_{n}, y\right)\right) d y \leqslant \lim _{n \rightarrow \infty} \int_{[c, d]}\left(f(a, y)-h_{n}(y)\right) d y \leqslant 0
$$

thus $F(a)-\liminf _{n \rightarrow \infty} F\left(x_{n}\right) \leqslant 0$.
Problem 6 (The multiple integral version of Theorem 6.65 in the lecture note). Let A be a closed rectangle in \mathbb{R}^{n}, and $f_{k}: A \rightarrow \mathbb{R}$ be a decreasing sequence of bounded functions. Show (without applying Theorem 6.69 and 6.70 in the lecture note) that if $\lim _{k \rightarrow \infty} f_{k}(x)=0$ for all $x \in A$, then

$$
\lim _{k \rightarrow \infty} \int_{A} f_{k}(x) d x=0
$$

Conclude the Monotone Convergence Theorem (Theorem 6.69 in the lecture note) and the Bounded Convergence Theorem (Theorem 6.70 in the lecture note) using the this conclusion of convergence.

Proof. Let $\varepsilon>0$ be given. Similar to the proof of Lemma 6.63 in the lecture, for each $k \in \mathbb{N}$ there exists a continuous function $g_{k}: A \rightarrow \mathbb{R}$ such that $0 \leqslant g_{k} \leqslant f_{k}$ and

$$
\begin{equation*}
\underline{\int}_{A} f_{k}(x) d x<\int_{A} g_{k}(x) d x+\frac{\varepsilon}{2^{k+1}} . \tag{0.1}
\end{equation*}
$$

Define $h_{k}=\min \left\{g_{1}, \cdots, g_{k}\right\}$. Then h_{k} is continuous on $A, h_{k} \geqslant h_{k+1}$ (that is, $\left\{h_{k}\right\}_{k=1}^{\infty}$ is a decreasing sequence of funtions), $0 \leqslant h_{k} \leqslant g_{k} \leqslant f_{k}$ for all $k \in \mathbb{N}$, and $\lim _{k \rightarrow \infty} h_{k}(x)=0$ for all $x \in A$. Again, by Problem 5 (with A replaced by closed rectangle) we find that $\left\{h_{k}\right\}_{k=1}^{\infty}$ converges to the zero function in the following sense:

$$
\lim _{k \rightarrow \infty} \sup _{x \in A}\left|h_{k}(x)\right|=0 ;
$$

thus there exists $N>0$ such that

$$
\begin{equation*}
\int_{A} h_{k}(x) d x<\frac{\varepsilon}{4} \quad \forall k \geqslant N . \tag{0.2}
\end{equation*}
$$

On the other hand, for $1 \leqslant \ell \leqslant k, \max \left\{g_{\ell}, \cdots, g_{k}\right\} \leqslant \max \left\{f_{\ell}, \cdots, f_{k}\right\}=f_{\ell}$; thus

$$
\int_{A}\left(\max \left\{g_{\ell}, \cdots, g_{k}\right\}(x)-g_{\ell}(x)\right) d x \leqslant \int_{A} f_{\ell}(x) d x-\int_{A} g_{\ell}(x) d x<\frac{\varepsilon}{2^{\ell+1}} .
$$

Moreover, for each $1 \leqslant j \leqslant k$ and $x \in A$,

$$
\begin{aligned}
0 & \leqslant g_{k}(x)=g_{j}(x)+\left(g_{k}(x)-g_{j}(x)\right) \leqslant g_{j}(x)+\left(\max \left\{g_{j}(x), \cdots, g_{k}(x)\right\}-g_{j}\right) \\
& \leqslant g_{j}(x)+\sum_{\ell=1}^{k-1}\left(\max \left\{g_{\ell}, \cdots, g_{k}\right\}(x)-g_{\ell}(x)\right),
\end{aligned}
$$

so minimizing the right-hand side over all $1 \leqslant j \leqslant k$ implies that

$$
0 \leqslant g_{k}(x) \leqslant h_{k}(x)+\sum_{\ell=1}^{k-1}\left(\max \left\{g_{\ell}, \cdots, g_{k}\right\}(x)-g_{\ell}(x)\right) \quad \forall x \in A
$$

As a consequence,

$$
0 \leqslant \int_{A} g_{k}(x) d x \leqslant \int_{A} h_{k}(x) d x+\sum_{\ell=1}^{k-1} \frac{\varepsilon}{2^{\ell+1}} \leqslant \int_{A} h_{k}(x) d x+\frac{\varepsilon}{2} ;
$$

thus (0.1) and (0.2) imply that

$$
0 \leqslant \int_{A} f_{k}(x) d x<\varepsilon \quad \forall k \geqslant N
$$

Now suppose that $\left\{f_{k}\right\}_{k=1}^{\infty}$ is a monotone increasing sequence of Riemann integrable functions on A and for some Riemann integrable function f we have $\lim _{k \rightarrow \infty} f_{k}(x)=f(x)$ for all $x \in A$. Define $g_{k}(x)=f(x)-f_{k}(x)$. Then $\left\{g_{k}\right\}_{k=1}^{\infty}$ is a decreasing sequence of bounded function and $\lim _{k \rightarrow \infty} g_{k}(x)=0$ for all $x \in A$; thus

$$
\lim _{k \rightarrow \infty} \int_{A} g_{k}(x) d x=0
$$

Nevertheless, since $g_{k}=f-f_{k}$ and both f and f_{k} are Riemann integrable on A, we have

$$
\underline{\int}_{A} g_{k}(x) d x=\int_{A} g_{k}(x) d x=\int_{A} f(x) d x-\int_{A} f_{k}(x) d x
$$

so that we conclude that $\lim _{k \rightarrow \infty} \int_{A} f_{k}(x) d x=\int_{A} f(x) d x$.
Now suppose that $\left\{f_{k}\right\}_{k=1}^{\infty}$ is a sequence of Riemann integrable functions such that $\left|f_{k}(x)\right| \leqslant M$ for all $k \in \mathbb{N}$ and $x \in A$, and $\lim _{k \rightarrow \infty} f_{k}(x)=f(x)$ for all $x \in A$. Define $g_{k}: A \rightarrow \mathbb{R}$ by $g_{k}(x)=$ $\sup _{\ell \geqslant k}\left|f_{\ell}(x)-f(x)\right|$. Then $\left\{g_{k}\right\}_{k=1}^{\infty}$ is a decreasing sequence of bounded functions and $\lim _{k \rightarrow \infty} g_{k}(x)=0$ for all $x \in A$. Therefore,

$$
\lim _{k \rightarrow \infty} \int_{A} g_{k}(x) d x=0
$$

On the other hand, $\left|f_{k}(x)-f(x)\right| \leqslant g_{k}(x)$ for all $k \in \mathbb{N}$ and $x \in A$; thus the integrability of f_{k} and f implies that

$$
\int_{A}\left|f_{k}(x)-f(x)\right| d x=\underline{\int}_{A}\left|f_{k}(x)-f(x)\right| d x \leqslant \int_{A} g_{k}(x) d x
$$

and the Sandwich lemma further shows hat

$$
\lim _{k \rightarrow \infty} \int_{A}\left|f_{k}(x)-f(x)\right| d x=0
$$

Therefore, $\lim _{k \rightarrow \infty} \int_{A} f_{k}(x) d x=\int_{A} f(x) d x$.

