
Exercise Problem Sets 15
Dec. 31. 2022

Problem 1. Let f : Rn Ñ Rm be differentiable, and Df is a constant map in B(Rn,Rm); that is,
(Df)(x)(u) = (Df)(y)(u) for all x, y P Rn and u P Rn. Show that f is a linear term plus a constant
and that the linear part of f is the constant value of Df .

Proof. Suppose that (Df)(x) = L P B(Rn,Rm), where L is a “constant” bounded linear map
independent of x. Let g(x) = f(x) ´ Lx. Then (Dg)(x) = (Df)(x) ´ L = 0 for all x P Rn; thus
Problem 2 of Exercise 15 implies that g is a constant function. Therefore,

f(x) ´ Lx = C

for some constant C which shows that f(x) = Lx+ C; that is, f is a linear term plus a constant. ˝

Problem 2. Let U Ď Rn be open, and f : U Ñ R be of class C k and (Dℓf)(a) = 0 for ℓ = 1, ¨ ¨ ¨ , k´1.
Show that if (Dkf)(a)(u, u, ¨ ¨ ¨ , u) ą 0 for all non-zero vectors u P Rn, then f has a local minimum
at a; that is, there exists δ ą 0 such that

f(x) ě f(a) @x P B(a, δ) .

Proof. Let a P U . Since U is open, there exists r ą 0 such that B(a, r) Ď U . Note that g :

B(a, r) ˆ Rn Ñ R defined by g(x, u) = (Dkf)(x)(u, ¨ ¨ ¨ , u) is continuous since
ˇ
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and the right-hand side approaches zero as x Ñ y and u Ñ v. In particular, by the compactness
of Sn´1 ”

␣

x P Rn
ˇ

ˇ }x} = 1
(

(= B[0, 1]zB(0, 1) which is closed and bounded), g(a, ¨) attains its
minimum at some point w P Sn´1; that is,

g(a, u) ě g(a, w) @u P Sn´1 .



Let λ = g(a, w) = (Dkf)(a)(w, ¨ ¨ ¨ , w) ą 0. Since f is of class C k, there exists 0 ă δ ă r such that

}(Dkf)(x) ´ (Dkf)(a)} ă
λ

2
whenever x P B(a, δ) .

Let x P B(a, δ)ztau be given. By Taylor’s Theorem there exists c P xa (so that c P B(a, δ)) such
that
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Since (Dℓf)(a)(u, u, ¨ ¨ ¨ , u) = 0 for 1 ď j ď k ´ 1, we conclude that
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By the fact that g(c, x ´ a) = g
(
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thus f(x) ě f(a) for all x P B(a, δ). ˝


