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Problem 1. Complete the following.

1. Show that if f : Rn Ñ Rm is continuous, and B Ď Rn is bounded, then f(B) is bounded.

2. If f : R Ñ R is continuous and K Ď R is compact, is f´1(K) necessarily compact?

3. If f : R Ñ R is continuous and C Ď R is connected, is f´1(C) necessarily connected?

Solution. 1. Since B is bounded, sB is closed and bounded; thus the Heine-Borel Theorem implies
that sB is compact. Since f : Rn Ñ Rm is continuous, f( sB) is also compact; thus bounded.
The boundedness of f(B) then follows from the fact that f(B) Ď f( sB).

2. No. For example, consider f : R Ñ R given by f(x) = sinx and K = [´1, 1]. Then K is
compact but f´1(K) is the whole real line so that f´1(K) is not compact.

3. No. For example, consider f : R Ñ R given by f(x) = x2 and C = [1, 4]. Then C is connected
since it is an interval (Corollary 3.69 in the lecture note) but f´1(C) = [´2,´1] Y [1, 2] which
is clearly disconnected. ˝

Problem 2. Consider a compact set K Ď Rn and let f : K Ñ Rm be continuous and one-to-one.
Show that the inverse function f´1 : f(K) Ñ K is continuous. How about if K is not compact but
connected?

Proof. Let F be a closed subset of K. Then 1 of Problem 11 of Exercise 8 implies that F is
compact. Therefore, f(F ) is compact since f is continuous (Theorem 4.25 in the lecture note). Since
f(F ) = (f´1)´1(F ), we conclude that the pre-image of F under f´1 is compact; hence (f´1)´1(F )

is closed in f(K) for all closed sets F Ď K. Therefore, Theorem 4.14 in the lecture note shows that
f´1 : f(K) Ñ K is continuous.

However, f´1 : f(K) Ñ K is not necessarily continuous if K is connected. For example, consider
f : [0, 2π) Ñ R2 given by f(t) = (cos t, sin t). Then f is one-to-one but f´1 : f([0, 2π)) Ñ [0, 2π) is
not continuous at f(0) = (1, 0) since the sequences txnu8

n=1, tynu8
n=1 given by

xn =
(

cos 1

n
, sin 1

n

)
and yn =

(
cos

(
2π ´

1

n

)
, sin

(
2π ´

1

n

))
both converges to (1, 0) but f´1(xn) =

1

n
and f´1(yn) = 2π ´

1

n
so that

lim
nÑ8

f´1(xn) = 0 ‰ 2π = lim
nÑ8

f´1(yn) . ˝

Problem 3. Let (M,d) be a metric space, K Ď M be compact, and f : K Ñ R be lower semi-
continuous (see Problem 8 of Exercise 10 for the definition). Show that f attains its minimum on
K.



Proof. Claim: there exists a sequence txnu8
n=1 such that lim

nÑ8
f(xn) = inf

xPK
f(x).

Proof of claim: If inf
xPK

f(x) P R, for each n P N there exists xn P K such that

inf
xPK

f(x) ď f(xn) ď inf
xPK

f(x) +
1

n
.

If inf
xPK

f(x) = ´8, for each n P N there exists xn P K such that f(xn) ă ´n. In either case,
lim
nÑ8

f(xn) = inf
xPK

f(x). ˝

W.L.O.G. we can assume that f(xn) ą inf
xPK

f(x) for all n P N (for otherwise we find that f attains
its minimum at some xn). Let n1 = 1, and for given nk choose nk+1 ą nk such that f(xnk

) ą f(xnk+1
).

In this way we obtain a subsequence txnk
u8
k=1 of txnu8

n=1 satisfying that

lim
kÑ8

f(xnk
) = inf

xPK
f(x) and f(xnk

) ě f(xnk+1
) @ k P N .

Since txnk
u8
k=1 Ď K, by the compactness of K there exists a convergent subsequence

␣

xnkℓ
u8
ℓ=1 of

txnk
u8
k=1. Suppose that lim

ℓÑ8
xnkℓ

= a. Then by the fact that xnk
‰ xnℓ

for all k ‰ ℓ, we have

#
␣

ℓ P N
ˇ

ˇxnkℓ
= a

(

ď 1 .

Therefore, up to deleting one term in the sequence we can assume that
␣

xnkℓ

(8

ℓ=1
Ď Kztau. In such

a case the lower semi-continuity of f implies that

lim inf
ℓÑ8

f
(
xnkℓ

)
ě lim inf

xÑa
f(x) ě f(a) .

Since lim
nÑ8

f(xn) = inf
xPK

f(x), the inequality above implies that

inf
xPK

f(x) = lim inf
ℓÑ8

f
(
xnkℓ

)
ě lim inf

xÑa
f(x) ě f(a) ě inf

xPK
f(x) ;

thus f(a) = inf
xPK

f(x). ˝

Problem 4. Let (M,d) be a metric space. Show that a subset A Ď M is connected if and only if
every continuous function defined on A whose range is a subset of t0, 1u is constant.

Proof. “ñ” Assume that A is connected and f : A Ñ t0, 1u is a continuous function, and δ = 1/2.
Suppose the contrary that f´1(t0u) ‰ H and f´1(t1u) ‰ H. Then A = f´1((´δ, δ)) and
B = f´1((1 ´ δ, 1 + δ)) are non-empty set. Moreover, the continuity of f implies that A and
B are open relative to A; thus there exist open sets U and V such that

f´1((´δ, δ)) = U X A and f´1((1 ´ δ, 1 + δ)) = V X A .

Then

(1) A X U X V = f´1((´δ, δ)) X f´1((1 ´ δ, 1 + δ)) = H ,

(2) A X U ‰ H and A X V ‰ H ,

(3) A Ď U Y V since the range of f is a subset of t0, 1u ;



thus A is disconnect, a contradiction.

“ð” Suppose the contrary that A is disconnected so that there exist open sets U and V such that

(1) A X U X V = H , (2) A X U ‰ H , (3) A X V ‰ H , (4) A Ď U Y V .

Let f : A Ñ R be defined by

f(x) =

"

0 if x P A X U ,
1 if x P A X V .

We first prove that f is continuous on A. Let a P A. Then a P AXU or a P AXV . Suppose that
a P A X U . In particular a P U ; thus the openness of U provides r ą 0 such that B(a, r) Ď U .
Note that if x P B(a, r) X A, then x P A Ď U ; thus

ˇ

ˇf(x) ´ f(a)
ˇ

ˇ = 0 @x P B(a, r) X A

which shows the continuity of f at a. Similar argument can be applied to show that f is
continuous at a P A X V . ˝

Problem 5. Let } ¨ } be a norm on Rn, and f : Rn Ñ R be defined by f(x) = }x}. Show that f is
continuous on (Rn, } ¨ }2).
Hint: Show that |f(x) ´ f(y)| ď C}x ´ y}2 for some fixed constant C ą 0.

Problem 6. Let (V , } ¨ }) be a normed vector fields over F, where F = R or C, and dim(V) ă 8.
Show that a subset K of V is compact if and only if K is closed and bounded.
Hint: See Remark 3.43 in the lecture note for the case } ¨ } = } ¨ }2, and the general case follows from
Example 4.29 in the lecture note.

In Exercise Problem 7 through 10, we focus on another kind of connected sets, so-called path
connected sets. First we introduce path connectedness in the following

Definition 0.1. Let (M,d) be a metric space. A subset A Ď M is said to be path connected if for
every x, y P A, there exists a continuous map φ : [0, 1] Ñ A such that φ(0) = x and φ(1) = y.

y

x

A

Figure 1: Path connected sets

Problem 7. Recall that a set A in a vector space V is called convex if for all x, y P A, the line
segment joining x and y lies in A. Show that a convex set in a normed space is path connected.



Problem 8. A set S in a vector space V is called star-shaped if there exists p P S such that for
any q P S, the line segment joining p and q lies in S. Show that a star-shaped set in a normed space
is path connected.

Proof. Suppose that there exists p P S such that for any q P S, the line segment joining p and q lies
in S. In other words, such p P S satisfies that

(1 ´ λ)q + λp Ď S @λ P [0, 1] and q P S .

Let x, y in S. Define

φ(t) =

$

&

%

(1 ´ 2t)x+ 2tp if 0 ď t ď
1

2
,

(2 ´ 2t)p+ (2t ´ 1)y if 1

2
ă t ď 1 .

Then φ is continuous on [0, 1]
(
since lim

tÑ0.5+
φ(t) = lim

tÑ0.5´
φ(t) = p so that φ is continuous at 0.5

)
.

Moreover, φ([0, 0.5]) = xp and φ([0.5, 1]) = py so that φ : [0, 1] Ñ A is continuous with φ(0) = x

and φ(1) = y. Therefore, A is path connected. ˝

Problem 9. Let A =
!(
x, sin 1

x

) ˇ
ˇ

ˇ
x P (0, 1]

)

Y(t0uˆ [´1, 1]). Show that A is connected in (R2, }¨}2),
but A is not path connected.

Proof. Assume the contrary that A is path connected such that there is a continuous function φ :

[0, 1] Ñ A such that φ(0) = (x0, y0) P

!(
x, sin 1

x

)
ˇ

ˇx P (0, 1)
)

and φ(1) = (0, 0) P t0u ˆ [´1, 1]. Let

t0 = inf
␣

t P [0, 1]
ˇ

ˇφ(t) P t0u ˆ [´1, 1]
(

. In other words, at t = t0 the path touches 0 ˆ [´1, 1]

for the “first time”. By the continuity of φ, φ(t0) P t0u ˆ [´1, 1]. Since φ(0) R t0u ˆ [´1, 1],
φ([0, t0)) Ď

!(
x, sin 1

x

) ˇ
ˇ

ˇ
x P (0, 1)

)

.

Suppose that φ(t0) = (0, ȳ) for some ȳ P [´1, 1], and φ(t) =
(
x(t), sin 1

x(t)

)
for 0 ď t ă t0. By

the continuity of φ, there exists δ ą 0 such that if |t ´ t0| ă δ, |φ(t) ´ φ(t0)| ă 1. In particular,

x(t)2 +
(

sin 1

x(t)
´ ȳ

)2

ă 1 @ t P (t0 ´ δ, t) .

On the other hand, since φ is continuous, x(t) is continuous on [0, t0); thus by the fact that [0, t0) is
connected, x([0, t0)) is connected. Therefore, x([0, t0)) = (0, x̄] for some x̄ ą 0. Since lim

tÑt0
x(t) = 0,

there exists ttnu8
n=1 P [0, t0) such that tn Ñ t0 as n Ñ 8 and

ˇ

ˇ sin 1

x(tn)
´ ȳ

ˇ

ˇ ě 1. For n " 1,
tn P (t0 ´ δ, t0) but

x(tn)
2 +

(
sin 1

x(tn)
´ ȳ

)2

ě 1 ,

a contradiction.
On the other hand, A is the closure of the connected set B =

!(
x, sin 1

x

) ˇ
ˇ

ˇ
x P (0, 1)

) (
the

connectedness of B follows from the fact that the function ψ(x) =
(
x, sin 1

x

)
is continuous on the

connected set (0, 1)
)
. Therefore, by Problem 10 of Exercise 9, A = sB is connected. ˝



Problem 10. Let (M,d) be a metric space, and A Ď M . Show that if A is path connected, then A

is connected.

Proof. Assume the contrary that there are non-empty sets A1, A2 such that A = A1 Y A2 but
A1 X ĎA2 = A2 X ĎA1 = H. Let x P A1 and y P A2. By the path connectedness of A, there exists
a continuous map φ : [0, 1] Ñ A such that φ(0) = x and φ(1) = y. Define I1 = φ´1(A1) and
I2 = φ´1(A2). Then clearly 0 P I1 and 1 P I2, and I1 X I2 = H. Moreover,

[0, 1] = φ´1(A) = φ´1(A1 Y A2) = φ´1(A1) Y φ´1(A2) = I1 Y I2 .

Claim: I1 X sI2 = I2 X sI1 = H.
Suppose the contrary that t P I1 X sI2. Then t P φ(A1) which shows that φ(t) P A1. On the other

hand, t P sI2; thus there exists ttnu8
n=1 Ď I2 such that tn Ñ t as n Ñ 8. By the continuity of φ,

φ(t) = lim
nÑ8

φ(tn) P ĎA2 ;

thus we find that φ(t) P A1 X ĎA2, a contradiction. Therefore, I1 X sI2 = H. Similarly, I2 X sI1 = H;
thus we establish the existence of non-empty sets I1 and I2 such that

[0, 1] = I1 Y I2 , I1, I2 ‰ H , I1 X sI2 = I2 X sI1 = H

which shows that [0, 1] is disconnected, a contradiction. ˝

Alternative proof. Assume the contrary that there are two open sets V1 and V2 such that

1. A X V1 X V2 = H; 2. A X V1 ‰ H; 3. A X V2 ‰ H; 4. A Ď V1 Y V2 .

Since A is path connected, for x P AXV1 and y P AXV2, there exists a continuous map φ : [0, 1] Ñ A

such that φ(0) = x and φ(1) = y. By Theorem 4.14 in the lecture note, there exist U1 and U2 open
in (R, | ¨ |) such that φ´1(V1) = U1 X [0, 1] and φ´1(V2) = U2 X [0, 1]. Therefore,

[0, 1] = φ´1(A) Ď φ´1(V1) Y φ´1(V2) Ď U1 Y U2 .

Since 0 P U1, 1 P U2, and [0, 1] X U1 X U2 = φ´1(A X V1 X V2) = H, we conclude that [0, 1] is
disconnected, a contradiction to Theorem 3.68 in the lecture note. ˝

Problem 11. Let (M,d), (N, ρ) be metric spaces, A be a subset of M , and f : A Ñ N be a
continuous map. Show that if C Ď A is path connected, so is f(C).

Proof. Let y1, y2 P f(C). Then D x1, x2 P C such that f(x1) = y1 and f(x2) = y2. Since C is path
connected, D r : [0, 1] Ñ C such that r is continuous on [0, 1] and r(0) = x1 and r(1) = x2. Let
φ : [0, 1] Ñ f(C) be defined by φ = f ˝ r. By Corollary 4.24 in the lecture note φ is continuous on
[0, 1], and φ(0) = y1 and φ(1) = y2. ˝


