## Exercise Problem Sets 11

Nov. 25. 2022

Problem 1. Complete the following.

1. Show that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous, and $B \subseteq \mathbb{R}^{n}$ is bounded, then $f(B)$ is bounded.
2. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $K \subseteq \mathbb{R}$ is compact, is $f^{-1}(K)$ necessarily compact?
3. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $C \subseteq \mathbb{R}$ is connected, is $f^{-1}(C)$ necessarily connected?

Solution. 1. Since $B$ is bounded, $\bar{B}$ is closed and bounded; thus the Heine-Borel Theorem implies that $\bar{B}$ is compact. Since $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous, $f(\bar{B})$ is also compact; thus bounded. The boundedness of $f(B)$ then follows from the fact that $f(B) \subseteq f(\bar{B})$.
2. No. For example, consider $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=\sin x$ and $K=[-1,1]$. Then $K$ is compact but $f^{-1}(K)$ is the whole real line so that $f^{-1}(K)$ is not compact.
3. No. For example, consider $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ and $C=[1,4]$. Then $C$ is connected since it is an interval (Corollary 3.69 in the lecture note) but $f^{-1}(C)=[-2,-1] \cup[1,2]$ which is clearly disconnected.

Problem 2. Consider a compact set $K \subseteq \mathbb{R}^{n}$ and let $f: K \rightarrow \mathbb{R}^{m}$ be continuous and one-to-one. Show that the inverse function $f^{-1}: f(K) \rightarrow K$ is continuous. How about if $K$ is not compact but connected?

Proof. Let $F$ be a closed subset of $K$. Then 1 of Problem 11 of Exercise 8 implies that $F$ is compact. Therefore, $f(F)$ is compact since $f$ is continuous (Theorem 4.25 in the lecture note). Since $f(F)=\left(f^{-1}\right)^{-1}(F)$, we conclude that the pre-image of $F$ under $f^{-1}$ is compact; hence $\left(f^{-1}\right)^{-1}(F)$ is closed in $f(K)$ for all closed sets $F \subseteq K$. Therefore, Theorem 4.14 in the lecture note shows that $f^{-1}: f(K) \rightarrow K$ is continuous.

However, $f^{-1}: f(K) \rightarrow K$ is not necessarily continuous if $K$ is connected. For example, consider $f:[0,2 \pi) \rightarrow \mathbb{R}^{2}$ given by $f(t)=(\cos t, \sin t)$. Then $f$ is one-to-one but $f^{-1}: f([0,2 \pi)) \rightarrow[0,2 \pi)$ is not continuous at $f(0)=(1,0)$ since the sequences $\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{\infty},\left\{\boldsymbol{y}_{n}\right\}_{n=1}^{\infty}$ given by

$$
\boldsymbol{x}_{n}=\left(\cos \frac{1}{n}, \sin \frac{1}{n}\right) \quad \text { and } \quad \boldsymbol{y}_{n}=\left(\cos \left(2 \pi-\frac{1}{n}\right), \sin \left(2 \pi-\frac{1}{n}\right)\right)
$$

both converges to $(1,0)$ but $f^{-1}\left(\boldsymbol{x}_{n}\right)=\frac{1}{n}$ and $f^{-1}\left(\boldsymbol{y}_{n}\right)=2 \pi-\frac{1}{n}$ so that

$$
\lim _{n \rightarrow \infty} f^{-1}\left(\boldsymbol{x}_{n}\right)=0 \neq 2 \pi=\lim _{n \rightarrow \infty} f^{-1}\left(\boldsymbol{y}_{n}\right)
$$

Problem 3. Let $(M, d)$ be a metric space, $K \subseteq M$ be compact, and $f: K \rightarrow \mathbb{R}$ be lower semicontinuous (see Problem 8 of Exercise 10 for the definition). Show that $f$ attains its minimum on $K$.

Proof. Claim: there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\inf _{x \in K} f(x)$. Proof of claim: If $\inf _{x \in K} f(x) \in \mathbb{R}$, for each $n \in \mathbb{N}$ there exists $x_{n} \in K$ such that

$$
\inf _{x \in K} f(x) \leqslant f\left(x_{n}\right) \leqslant \inf _{x \in K} f(x)+\frac{1}{n} .
$$

If $\inf _{x \in K} f(x)=-\infty$, for each $n \in \mathbb{N}$ there exists $x_{n} \in K$ such that $f\left(x_{n}\right)<-n$. In either case, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\inf _{x \in K} f(x)$.
W.L.O.G. we can assume that $f\left(x_{n}\right)>\inf _{x \in K} f(x)$ for all $n \in \mathbb{N}$ (for otherwise we find that $f$ attains its minimum at some $x_{n}$ ). Let $n_{1}=1$, and for given $n_{k}$ choose $n_{k+1}>n_{k}$ such that $f\left(x_{n_{k}}\right)>f\left(x_{n_{k+1}}\right)$. In this way we obtain a subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{x_{n}\right\}_{n=1}^{\infty}$ satisfying that

$$
\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=\inf _{x \in K} f(x) \quad \text { and } \quad f\left(x_{n_{k}}\right) \geqslant f\left(x_{n_{k+1}}\right) \quad \forall k \in \mathbb{N} .
$$

Since $\left\{x_{n_{k}}\right\}_{k=1}^{\infty} \subseteq K$, by the compactness of $K$ there exists a convergent subsequence $\left\{x_{n_{k_{\ell}}}\right\}_{\ell=1}^{\infty}$ of $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$. Suppose that $\lim _{\ell \rightarrow \infty} x_{n_{k_{\ell}}}=a$. Then by the fact that $x_{n_{k}} \neq x_{n_{\ell}}$ for all $k \neq \ell$, we have

$$
\#\left\{\ell \in \mathbb{N} \mid x_{n_{k_{\ell}}}=a\right\} \leqslant 1
$$

Therefore, up to deleting one term in the sequence we can assume that $\left\{x_{n_{k_{\ell}}}\right\}_{\ell=1}^{\infty} \subseteq K \backslash\{a\}$. In such a case the lower semi-continuity of $f$ implies that

$$
\liminf _{\ell \rightarrow \infty} f\left(x_{n_{k_{\ell}}}\right) \geqslant \liminf _{x \rightarrow a} f(x) \geqslant f(a) .
$$

Since $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\inf _{x \in K} f(x)$, the inequality above implies that

$$
\inf _{x \in K} f(x)=\liminf _{\ell \rightarrow \infty} f\left(x_{n_{k_{\ell}}}\right) \geqslant \liminf _{x \rightarrow a} f(x) \geqslant f(a) \geqslant \inf _{x \in K} f(x) ;
$$

thus $f(a)=\inf _{x \in K} f(x)$.
Problem 4. Let $(M, d)$ be a metric space. Show that a subset $A \subseteq M$ is connected if and only if every continuous function defined on $A$ whose range is a subset of $\{0,1\}$ is constant.

Proof. " $\Rightarrow$ " Assume that $A$ is connected and $f: A \rightarrow\{0,1\}$ is a continuous function, and $\delta=1 / 2$. Suppose the contrary that $f^{-1}(\{0\}) \neq \varnothing$ and $f^{-1}(\{1\}) \neq \varnothing$. Then $A=f^{-1}((-\delta, \delta))$ and $B=f^{-1}((1-\delta, 1+\delta))$ are non-empty set. Moreover, the continuity of $f$ implies that $A$ and $B$ are open relative to $A$; thus there exist open sets $U$ and $V$ such that

$$
f^{-1}((-\delta, \delta))=U \cap A \quad \text { and } \quad f^{-1}((1-\delta, 1+\delta))=V \cap A
$$

Then
(1) $A \cap U \cap V=f^{-1}((-\delta, \delta)) \cap f^{-1}((1-\delta, 1+\delta))=\varnothing$,
(2) $A \cap U \neq \varnothing$ and $A \cap V \neq \varnothing$,
(3) $A \subseteq U \cup V$ since the range of $f$ is a subset of $\{0,1\}$;
thus $A$ is disconnect, a contradiction.
" $\Leftarrow$ " Suppose the contrary that $A$ is disconnected so that there exist open sets $U$ and $V$ such that
(1) $A \cap U \cap V=\varnothing$,
(2) $A \cap U \neq \varnothing$,
(3) $A \cap V \neq \varnothing$,
(4) $A \subseteq U \cup V$.

Let $f: A \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}0 & \text { if } x \in A \cap U, \\ 1 & \text { if } x \in A \cap V\end{cases}
$$

We first prove that $f$ is continuous on $A$. Let $a \in A$. Then $a \in A \cap U$ or $a \in A \cap V$. Suppose that $a \in A \cap U$. In particular $a \in U$; thus the openness of $U$ provides $r>0$ such that $B(a, r) \subseteq U$. Note that if $x \in B(a, r) \cap A$, then $x \in A \subseteq U$; thus

$$
|f(x)-f(a)|=0 \quad \forall x \in B(a, r) \cap A
$$

which shows the continuity of $f$ at $a$. Similar argument can be applied to show that $f$ is continuous at $a \in A \cap V$.

Problem 5. Let $\|\cdot\|$ be a norm on $\mathbb{R}^{n}$, and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined by $f(x)=\|x\|$. Show that $f$ is continuous on ( $\mathbb{R}^{n},\|\cdot\|_{2}$ ).
Hint: Show that $|f(x)-f(y)| \leqslant C\|x-y\|_{2}$ for some fixed constant $C>0$.
Problem 6. Let $(\mathcal{V},\|\cdot\|)$ be a normed vector fields over $\mathbb{F}$, where $\mathbb{F}=\mathbb{R}$ or $\mathbb{C}$, and $\operatorname{dim}(\mathcal{V})<\infty$. Show that a subset $K$ of $\mathcal{V}$ is compact if and only if $K$ is closed and bounded.
Hint: See Remark 3.43 in the lecture note for the case $\|\cdot\|=\|\cdot\|_{2}$, and the general case follows from Example 4.29 in the lecture note.

In Exercise Problem 7 through 10, we focus on another kind of connected sets, so-called path connected sets. First we introduce path connectedness in the following

Definition 0.1. Let $(M, d)$ be a metric space. A subset $A \subseteq M$ is said to be path connected if for every $x, y \in A$, there exists a continuous map $\varphi:[0,1] \rightarrow A$ such that $\varphi(0)=x$ and $\varphi(1)=y$.


Figure 1: Path connected sets
Problem 7. Recall that a set $A$ in a vector space $\mathcal{V}$ is called convex if for all $x, y \in A$, the line segment joining $x$ and $y$ lies in $A$. Show that a convex set in a normed space is path connected.

Problem 8. A set $S$ in a vector space $\mathcal{V}$ is called star-shaped if there exists $p \in S$ such that for any $q \in S$, the line segment joining $p$ and $q$ lies in $S$. Show that a star-shaped set in a normed space is path connected.

Proof. Suppose that there exists $p \in S$ such that for any $q \in S$, the line segment joining $p$ and $q$ lies in $S$. In other words, such $p \in S$ satisfies that

$$
(1-\lambda) q+\lambda p \subseteq S \quad \forall \lambda \in[0,1] \text { and } q \in S .
$$

Let $x, y$ in $S$. Define

$$
\varphi(t)=\left\{\begin{array}{cl}
(1-2 t) x+2 t p & \text { if } 0 \leqslant t \leqslant \frac{1}{2} \\
(2-2 t) p+(2 t-1) y & \text { if } \frac{1}{2}<t \leqslant 1
\end{array}\right.
$$

Then $\varphi$ is continuous on $[0,1]$ (since $\lim _{t \rightarrow 0.5^{+}} \varphi(t)=\lim _{t \rightarrow 0.5^{-}} \varphi(t)=p$ so that $\varphi$ is continuous at 0.5$)$. Moreover, $\varphi([0,0.5])=\overline{x p}$ and $\varphi([0.5,1])=\overline{p y}$ so that $\varphi:[0,1] \rightarrow A$ is continuous with $\varphi(0)=x$ and $\varphi(1)=y$. Therefore, $A$ is path connected.

Problem 9. Let $A=\left\{\left.\left(x, \sin \frac{1}{x}\right) \right\rvert\, x \in(0,1]\right\} \cup(\{0\} \times[-1,1])$. Show that $A$ is connected in $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$, but $A$ is not path connected.

Proof. Assume the contrary that $A$ is path connected such that there is a continuous function $\varphi$ : $[0,1] \rightarrow A$ such that $\varphi(0)=\left(x_{0}, y_{0}\right) \in\left\{\left.\left(x, \sin \frac{1}{x}\right) \right\rvert\, x \in(0,1)\right\}$ and $\varphi(1)=(0,0) \in\{0\} \times[-1,1]$. Let $t_{0}=\inf \{t \in[0,1] \mid \varphi(t) \in\{0\} \times[-1,1]\}$. In other words, at $t=t_{0}$ the path touches $0 \times[-1,1]$ for the "first time". By the continuity of $\varphi, \varphi\left(t_{0}\right) \in\{0\} \times[-1,1]$. Since $\varphi(0) \notin\{0\} \times[-1,1]$, $\varphi\left(\left[0, t_{0}\right)\right) \subseteq\left\{\left.\left(x, \sin \frac{1}{x}\right) \right\rvert\, x \in(0,1)\right\}$.

Suppose that $\varphi\left(t_{0}\right)=(0, \bar{y})$ for some $\bar{y} \in[-1,1]$, and $\varphi(t)=\left(x(t), \sin \frac{1}{x(t)}\right)$ for $0 \leqslant t<t_{0}$. By the continuity of $\varphi$, there exists $\delta>0$ such that if $\left|t-t_{0}\right|<\delta,\left|\varphi(t)-\varphi\left(t_{0}\right)\right|<1$. In particular,

$$
x(t)^{2}+\left(\sin \frac{1}{x(t)}-\bar{y}\right)^{2}<1 \quad \forall t \in\left(t_{0}-\delta, t\right) .
$$

On the other hand, since $\varphi$ is continuous, $x(t)$ is continuous on $\left[0, t_{0}\right)$; thus by the fact that $\left[0, t_{0}\right)$ is connected, $x\left(\left[0, t_{0}\right)\right)$ is connected. Therefore, $x\left(\left[0, t_{0}\right)\right)=(0, \bar{x}]$ for some $\bar{x}>0$. Since $\lim _{t \rightarrow t_{0}} x(t)=0$, there exists $\left\{t_{n}\right\}_{n=1}^{\infty} \in\left[0, t_{0}\right)$ such that $t_{n} \rightarrow t_{0}$ as $n \rightarrow \infty$ and $\left|\sin \frac{1}{x\left(t_{n}\right)}-\bar{y}\right| \geqslant 1$. For $n \gg 1$, $t_{n} \in\left(t_{0}-\delta, t_{0}\right)$ but

$$
x\left(t_{n}\right)^{2}+\left(\sin \frac{1}{x\left(t_{n}\right)}-\bar{y}\right)^{2} \geqslant 1
$$

a contradiction.
On the other hand, $A$ is the closure of the connected set $B=\left\{\left.\left(x, \sin \frac{1}{x}\right) \right\rvert\, x \in(0,1)\right\}$ (the connectedness of $B$ follows from the fact that the function $\psi(x)=\left(x, \sin \frac{1}{x}\right)$ is continuous on the connected set $(0,1))$. Therefore, by Problem 10 of Exercise $9, A=\bar{B}$ is connected.

Problem 10. Let $(M, d)$ be a metric space, and $A \subseteq M$. Show that if $A$ is path connected, then $A$ is connected.

Proof. Assume the contrary that there are non-empty sets $A_{1}, A_{2}$ such that $A=A_{1} \cup A_{2}$ but $A_{1} \cap \overline{A_{2}}=A_{2} \cap \overline{A_{1}}=\varnothing$. Let $x \in A_{1}$ and $y \in A_{2}$. By the path connectedness of $A$, there exists a continuous map $\varphi:[0,1] \rightarrow A$ such that $\varphi(0)=x$ and $\varphi(1)=y$. Define $I_{1}=\varphi^{-1}\left(A_{1}\right)$ and $I_{2}=\varphi^{-1}\left(A_{2}\right)$. Then clearly $0 \in I_{1}$ and $1 \in I_{2}$, and $I_{1} \cap I_{2}=\varnothing$. Moreover,

$$
[0,1]=\varphi^{-1}(A)=\varphi^{-1}\left(A_{1} \cup A_{2}\right)=\varphi^{-1}\left(A_{1}\right) \cup \varphi^{-1}\left(A_{2}\right)=I_{1} \cup I_{2} .
$$

Claim: $I_{1} \cap \bar{I}_{2}=I_{2} \cap \bar{I}_{1}=\varnothing$.
Suppose the contrary that $t \in I_{1} \cap \bar{I}_{2}$. Then $t \in \varphi\left(A_{1}\right)$ which shows that $\varphi(t) \in A_{1}$. On the other hand, $t \in \bar{I}_{2}$; thus there exists $\left\{t_{n}\right\}_{n=1}^{\infty} \subseteq I_{2}$ such that $t_{n} \rightarrow t$ as $n \rightarrow \infty$. By the continuity of $\varphi$,

$$
\varphi(t)=\lim _{n \rightarrow \infty} \varphi\left(t_{n}\right) \in \overline{A_{2}} ;
$$

thus we find that $\varphi(t) \in A_{1} \cap \overline{A_{2}}$, a contradiction. Therefore, $I_{1} \cap \bar{I}_{2}=\varnothing$. Similarly, $I_{2} \cap \bar{I}_{1}=\varnothing$; thus we establish the existence of non-empty sets $I_{1}$ and $I_{2}$ such that

$$
[0,1]=I_{1} \cup I_{2}, \quad I_{1}, I_{2} \neq \varnothing, \quad I_{1} \cap \bar{I}_{2}=I_{2} \cap \bar{I}_{1}=\varnothing
$$

which shows that $[0,1]$ is disconnected, a contradiction.
Alternative proof. Assume the contrary that there are two open sets $V_{1}$ and $V_{2}$ such that

1. $A \cap V_{1} \cap V_{2}=\varnothing$;
2. $A \cap V_{1} \neq \varnothing$;
3. $A \cap V_{2} \neq \varnothing$;
4. $A \subseteq V_{1} \cup V_{2}$.

Since $A$ is path connected, for $x \in A \cap V_{1}$ and $y \in A \cap V_{2}$, there exists a continuous map $\varphi:[0,1] \rightarrow A$ such that $\varphi(0)=x$ and $\varphi(1)=y$. By Theorem 4.14 in the lecture note, there exist $U_{1}$ and $U_{2}$ open in $(\mathbb{R},|\cdot|)$ such that $\varphi^{-1}\left(V_{1}\right)=U_{1} \cap[0,1]$ and $\varphi^{-1}\left(V_{2}\right)=U_{2} \cap[0,1]$. Therefore,

$$
[0,1]=\varphi^{-1}(A) \subseteq \varphi^{-1}\left(V_{1}\right) \cup \varphi^{-1}\left(V_{2}\right) \subseteq U_{1} \cup U_{2}
$$

Since $0 \in U_{1}, 1 \in U_{2}$, and $[0,1] \cap U_{1} \cap U_{2}=\varphi^{-1}\left(A \cap V_{1} \cap V_{2}\right)=\varnothing$, we conclude that $[0,1]$ is disconnected, a contradiction to Theorem 3.68 in the lecture note.

Problem 11. Let $(M, d),(N, \rho)$ be metric spaces, $A$ be a subset of $M$, and $f: A \rightarrow N$ be a continuous map. Show that if $C \subseteq A$ is path connected, so is $f(C)$.

Proof. Let $y_{1}, y_{2} \in f(C)$. Then $\exists x_{1}, x_{2} \in C$ such that $f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2}$. Since $C$ is path connected, $\exists r:[0,1] \rightarrow C$ such that $r$ is continuous on $[0,1]$ and $r(0)=x_{1}$ and $r(1)=x_{2}$. Let $\varphi:[0,1] \rightarrow f(C)$ be defined by $\varphi=f \circ r$. By Corollary 4.24 in the lecture note $\varphi$ is continuous on $[0,1]$, and $\varphi(0)=y_{1}$ and $\varphi(1)=y_{2}$.

