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Problem 1. A metric space (M,d) is said to be separable if there is a countable subset A which is
dense in M . Show that every sequentially compact set is separable.
Hint: Consider the total boundedness using balls with radius 1

n
for n P N.

Proof. Let K be a sequentially compact set in M . Then K is totally bounded; thus for each n P N
there exists a finite collection of points

␣

x
(n)
1 , x

(n)
2 , ¨ ¨ ¨ , x

(n)
Nn

(

Ď K such that

K Ď

Nn
ď

j=1

B
(
x
(n)
j ,

1

n

)
.

Let A =
8
Ť

n=1

␣

x
(n)
1 , x

(n)
2 , ¨ ¨ ¨ , x

(n)
Nn

(

. Then A Ď K and A is countable since it is union of countably many

finite sets. Moreover, for each x P K and n P N, there exists 1 ď j ď Nn such that x P B
(
x
(n)
j ,

1

n

)
;

thus for all ε ą 0, B(x, ε) X A ‰ H. Therefore, x P sA, and this shows that A Ď K Ď sA; thus A is
dense in K. ˝

Problem 2. Let (M,d) be a metric space.

1. Show that if M is complete and A is a totally bounded subset of M , then cl(A) is sequentially
compact.

2. Show that M is complete if and only if every totally bounded sequence has a convergent
subsequence.

Proof. 1. Let r ą 0 be given. Since A is totally bounded, there exist x1, x2, ¨ ¨ ¨ , xN P M such that

A Ď

N
ď

j=1

B
(
xj,

r

2

)
. (‹)

Note that for all x P M , B
(
x,

r

2

)
Ď B

[
x,

r

2

]
which further implies that

cl
(
B
(
x,

r

2

))
Ď B

[
x,

r

2

]
Ď B(x, r) @x P M .

Therefore, (‹) and Problem 2 in Exercise 8 imply that

sA Ď cl
( N
ď

j=1

B
(
xj,

r

2

))
=

N
ď

j=1

cl
(
B
(
xj,

r

2

))
Ď

N
ď

j=1

B(xj, r) .

This shows that sA is totally bounded. By the fact that (M,d) is complete, sA is complete; thus
sA is sequentially compact.



2. “ñ” Let txnu8
n=1 be a totally bounded subsequence. Define A = txn |n P Nu. Then A is totally

bounded, and (part of the proof of 1 shows that sA is totally bounded); thus by the fact that
M is complete 1 implies that sA is sequentially compact. Since txnu8

n=1 is a sequence in sA, we
find that there exists a convergent subsequence of txnu8

n=1 (that converges to a limit in sA).

“ð” By Proposition 2.58 in the lecture note it suffices to show that every Cauchy sequence is
totally bounded.

Let txnu8
n=1 be a Cauchy sequence, and r ą 0 be given. Then there exists N ą 0 such that

d(xn, xm) ă r whenever n,m ě N . In particular, d(xn, xN) ă r for all n ě N which further

implies that txnu8
n=N Ď B(x

N
, r). Therefore, txnu8

n=1 Ď
N
Ť

n=1

B(xn, r); thus txnu8
n=1 is totally

bounded. ˝

Alternative proof of 2 of Problem 2.
“ñ” Let txnu8

n=1 be a totally bounded subsequence. Define A = txn |n P Nu. Then A is totally
bounded; thus by the fact that M is complete 1 implies that sA is sequentially compact. Since
txnu8

n=1 is a sequence in sA, we find that there exists a convergent subsequence of txnu8
n=1 (that

converges to a limit in sA).
“ð” By Proposition ?? it suffices to show that every Cauchy sequence is totally bounded.

Let txnu8
n=1 be a Cauchy sequence. If txnu8

n=1 is not totally bounded, there exists r ą 0 such that
no finite collection of open balls with radius r can be a cover of txnu8

n=1. Let n1 = 1, and n2 be the least
integer satisfying xn2 R B(xn1 , r), and n3 be the least integer which is outside B(xn1 , r) Y B(xn2 , r).
We continue this process and obtain n1 ă n2 ă n3 ă ¨ ¨ ¨ such that

(a) n1 = 1; (b) xnk+1
R

k
Ť

j=1

B(xnj
, r) for all k P N.

However, this implies that there exists no N ą 0 such that d(xn, xm) ă r for all n,m ě N , a
contradiction to that txnu8

n=1 is a Cauchy sequence. ˝

Problem 3. Let txku8
k=1 be a convergent sequence in a metric space, and xk Ñ x as k Ñ 8. Show

that the set A ” tx1, x2, ¨ ¨ ¨ , u Y txu is sequentially compact.

Proof. See Example 3.57 in the lecture note. ˝

Problem 4. 1. Show the so-called “Finite Intersection Property”:

Let (M,d) be a metric space, and K be a subset of M . Then K is compact if
and if for any family of closed subsets tFαuαPI , we have

K X
č

αPI

Fα ‰ H

whenever K X
č

αPJ

Fα ‰ H for all J Ď I satisfying #J ă 8.



2. Show the so-called “Nested Set Properpty”:

Let (M,d) be a metric space. If tKnu8
n=1 is a sequence of non-empty compact

sets in M such that Kj Ě Kj+1 for all j P N, then there exists at least one point
in

8
Ş

j=1

Kj; that is,
8
č

j=1

Kj ‰ H .

Proof. 1. Suppose the contrary that K X
Ş

αPI Fα = H for some family of closed subsets tFαuαPI

satisfying that
K X

č

αPJ

Fα ‰ H for all J Ď I satisfying #J ă 8.

Then
K Ď

(
č

αPI

Fα

)A

=
ď

αPI

F A
α .

For each α P I, Fα is closed; thus the statement above shows that tF A
αuαPI is an open cover of

K; thus the compactness of K provides a finite collection Fα1 , ¨ ¨ ¨ , FαN
, where αj P I for all

1 ď j ď N , such that

K Ď

N
ď

j=1

F A
αj

=
( N
č

j=1

Fαj

)A

.

which implies that K X
N
Ş

j=1

Fαj
= H, a contradiction.

2. Let K = K1, and Fj = Kj for all j P N. Then for any finite subset J of N,

K X
č

jPJ

Fj = Kmax J ‰ H ;

thus 1 implies that K X
Ş

jPN
Fj ‰ H. ˝

Problem 5. Let (M,d) be a metric space, and M itself is a sequentially compact set. Show that if
tFku8

k=1 is a sequence of closed sets such that int(Fk) = H, then Mz
8
Ť

k=1

Fk ‰ H.

Proof. Let Uk = F A
k . Since F̊k = H and Fk is closed, BFk = ĎFkzF̊k = Fk. Therefore, if x P Fk then

x P ĎUk while if x R Fk, then x P Uk. In other words, every point x P M belongs to ĎUk so that we have
Uk Ď M Ď ĎUk for all k P N; that is, Uk is dense in M for all k P N.

Claim:
8
Ş

k=1

Uk is dense in M .

Proof of claim: It suffices to show that B(x, r) X
8
Ş

k=1

Uk ‰ H for all x P M and r ą 0
(
for this

shows that every x P M is in the closure of
8
Ş

k=1

Uk

)
.

Let x P M and r ą 0 be given. Since U1 is dense in M , B(x, r) X U1 ‰ H. Let x1 P B(x, r) X U1.
Since B(x, r)XU1 is open, there exists r1 ą 0 such that B(x1, 2r1) Ď B(x, r)XU1. Since U2 is dense



in M , B(x1, r1) X U2 ‰ H. Let x2 P B(x1, r1) X U2. By the fact that B(x1, r1) X U2 is open, there
exists r2 ą 0 such that B(x2, 2r2) Ď B(x1, r1) X U2. Continuing this process, we obtain sequences
txku8

k=1 in M and trku8
k=1 of positive numbers such that

B(xk, 2rk) Ď B(xk´1, rk´1) X Uk @ k P N, where x0 = x and r0 = r .

Since B[xk, rk] is a closed subset of a (sequentially) compact set M , B[xk, rk] is itself a (sequentially)
compact set. Moreover,

B[xk, rk] Ď B(xk, 2rk) Ď B(xk´1, rk´1) X Uk Ď B[xk´1, rk´1] ,

so tB[xk, rk]u
8
k=1 is a nested sequence of compact sets. By the nested set property (2 of Problem 4),

8
Ş

k=1

B[xk, rk] ‰ H. Therefore, by the fact that

B(x, r) X

8
č

k=1

Uk = B(x, r) X U1 X

8
č

k=2

Uk Ě B(x1, 2r1) X

8
č

k=2

Uk Ě B[x1, r1] X

8
č

k=2

Uk

Ě B[x1, r1] X B(x1, r1) X

8
č

k=2

Uk Ě B[x1, r1] X B(x1, r1) X U2 X

8
č

k=3

Uk

Ě B[x1, r1] X B[x2, r2] X

8
č

k=3

Uk Ě ¨ ¨ ¨ Ě

8
č

k=1

B[xk, rk] ‰ H .

Therefore, every ball intersects
8
Ş

k=1

Uk which concludes the claim. ˝

Having established the claim, the desired conclusion follows from the fact that a dense subset of
a non-empty metric space cannot be empty. ˝

Problem 6. Let M =
␣

(x, y) P R2 |x2 + y2 ď 1
(

with the standard metric

d((x1, y1), (x2, y2)) =
a

(x1 ´ x2)2 + (y1 ´ y2)2 .

Show that A Ď M is sequentially compact if and only if A is closed.

Problem 7. 1. Let txku8
k=1 Ď R be a sequence in (R, | ¨ |) that converges to x and let Ak =

txk, xk+1, ¨ ¨ ¨ u. Show that txu =
8
Ş

k=1

ĎAk. Is this true in any metric space?

2. Suppose that tKju
8
j=1 is a sequence of comapct non-empty sets satisfying the nested set prop-

erty; that is, Kj Ě Kj+1, and diam(Kj) Ñ 0 as j Ñ 8, where

diam(Kj) = sup
␣

d(x, y)
ˇ

ˇx, y P Kj

(

.

Show that there is exactly one point in
8
Ş

j=1

Kj.

Proof. 1. By 2, it suffices to show that sAk is non-empty compact set for all k P N and t sAku8
k=1 is a

nested set satisfying diam( sAk) Ñ 0 as k Ñ 8. Note that in class we have shown that the set



t0u Y
␣

1,
1

2
,
1

3
, ¨ ¨ ¨ ,

1

n
¨ ¨ ¨

(

is compact, and similar proof shows that Ak Y txu is compact; thus
sAk = Ak Y txu. Therefore, t sAku8

k=1 is a nested set.

Let ε ą 0 be given. Since txku8
k=1 converges to x, there exists N ą 0 such that d(xk, x) ă

ε

3
whenever k ě N . Then

d(y, z) ă
2ε

3
@ y, z P AN ;

thus for j ě N ,
diam(Kj) ď

2ε

3
ă ε

which implies that diam(Kj) Ñ 0 as j Ñ 8.

2. First, by the nested set property,
8
Ş

j=1

Kj ‰ H. Assume that x, y P
8
Ş

j=1

Kj. Then x, y P Kj for

all j P N; thus
0 ď d(x, y) ď diam(Kj) @ j P N .

By the assumption that diam(Kj) Ñ 0 as j Ñ 8, we conclude that d(x, y) = 0; thus by the
property of the metric, x = y. ˝

Problem 8. Let (M,d) be a metric space, and A be a subset of M satisfying that every sequence
in A has a convergent subsequence (with limit in M). Show that A is pre-compact.
Remark: Together with Remark 3.61 in the lecture note, we conclude that a subset A is pre-compact
if and only if A has the property that “every sequence in A has a convergent subsequence”.

Proof. Let A be a subset of M satisfying that every sequence in A has a convergent subsequence,
and txnu8

n=1 be a sequence in sA. Since sA is the collection of limit points of A, each xn is a limit point
of A; thus for each n P N there exists yn P A such that d(xn, yn) ă

1

n
. Using the property of A, there

exists a convergent subsequence tynj
u8
j=1 of tynu8

n=1 with limit y. By the fact that tynu8
n=1 Ď A, we

must have y P sA. Next we show that lim
jÑ8

xnj
= y.

Let ε ą 0 be given. Choose K ą 0 so that 1

K
ă

ε

2
. Moreover, since tynj

u8
j=1 converges to y, there

exists J ą 0 such that
d(ynj

, y) ă
ε

2
whenever j ě J .

Let N = maxtK, Ju. Then if j ě N , we must have

d(xnj
, ynj

) ă
1

nj

ď
1

j
ă

ε

2
and d(ynj

, y) ă
ε

2

so that

d(xnj
, y) ď d(xnj

, ynj
) + d(ynj

, y) ă ε whenever j ě N . ˝

Problem 9. Let (M,d) be a metric space, and A Ď M . Show that A is disconnected (not connected)
if and only if there exist non-empty closed set F1 and F2 such that

1. A X F1 X F2 = H ; 2. A X F1 ‰ H ; 3. A X F2 ‰ H ; 4. A Ď F1 Y F2 .



Proof. By definition, A is disconnected if (and only if) there exist non-empty open set U1 and U2

such that

(a) A X U1 X U2 = H , (b) A X U1 ‰ H , (c) A X U2 ‰ H , (d) A Ď U1 Y U2 .

Therefore, A is disconnected if and only if there exist non-empty closed set F1 ” U A
1 and F2 ” U A

2

such that

(i) A X F A
1 X F A

2 = H , (ii) A X F A
1 ‰ H , (iii) A X F A

2 ‰ H , (iv) A Ď F A
1 Y F A

2 .

Note that (i) above is equivalent to that A Ď F1 Y F2, while (iv) above is equivalent to that A X

F1 X F2 = H. Moreover, note that if A,B,C are sets satisfying A X B X C = H, A X B ‰ H and
A X C ‰ H, then

H ‰ A X B Ď A X CA and H ‰ A X C Ď A X BA .

Therefore, (a), (b) and (c) above imply 2 and 3 above, while (i) together with 2 and 3 above implies
that (b) and (c); thus we establish that A is disconnected if and only if there exist non-empty closed
sets F1 and F2 such that

1. A X F1 X F2 = H ; 2. A X F1 ‰ H ; 3. A X F2 ‰ H ; 4. A Ď F1 Y F2 . ˝

Problem 10. Prove that if A is connected in a metric space (M,d) and A Ď B Ď sA, then B is
connected.

Proof. Suppose the contrary that B is disconnected. Then Problem 9 implies that there exist two
closed set F1 and F2 such that

1. B X F1 X F2 = H ; 2. B X F1 ‰ H ; 3. B X F2 ‰ H ; 4. B Ď F1 Y F2 .

Define A1 = F1 X A and A2 = F2 X A. Then A = A1 Y A2. If A1 = H, then A2 = A which, together
with 3 of Problem 6 in Exercise 7, implies that

B Ď sA = sA2 Ď sA X sF2 = sA X F2

which implies that B = B X F2. The fact that B X F1 X F2 = H then implies that B X F1 Ď

(B XF2)
A = BA; thus B XF1 = H, a contradiction. Therefore, A1 ‰ H. Similarly, A2 ‰ H. However,

3 of Problem 6 in Exercise 7 implies that

A1 X sA2 = A1 X cl(F2 X A) Ď A1 X sF2 X sA = A1 X F2 Ď B X F1 X F2 = H

and
A2 X sA1 = A2 X cl(F1 X A) Ď A2 X sF1 X sA = A2 X F1 Ď B X F2 X F1 = H ,

a contradiction to the assumption that A is connected. ˝

Problem 11. Let (M,d) be a metric space, and A Ď M be a subset. Suppose that A is connected
and contain more than one point. Show that A Ď A1.



Proof. Suppose the contrary that there exists x P AzA1. Since AzA1 is the collection of isolated point
of A, there exists r ą 0 such that B(x, r) X A = txu. Let U = B(x, r) and V = B

[
x,

r

2

]A. Then

1. A X U X V = H.

2. A X U = txu ‰ H.

3. A X V Ě Aztxu ‰ H since A contains more than one point.

4. A X M = U Y V .

Therefore, A is disconnected, a contradiction. ˝

Problem 12. Show that the Cantor set C defined in Problem 9 of Exercise 8 is totally disconnected;
that is, if x, y P C, and x ‰ y, then x P U and y P V for some open sets U , V separate C.

Proof. It suffices to show that for every x, y P C, x ă y, there exists z P CA and x ă z ă y. Note
that there exists N ą 0 such that |x ´ y| ă

1

3n
for all n ě N . If C =

8
Ş

n=1

En, where En is given in

Problem 9 of Exercise 8. Then the length of each interval in En has length 1

3n
; thus if n ě N , the

interval [x, y] is not contained in any interval of En. In other words, there must be z P (x, y) such
that z P EA

n. Since EA
n Ď CA, we establish the existence of x ă z ă y such that z P CA. ˝

Problem 13. Let Fk be a nest of connected compact sets (that is, Fk+1 Ď Fk and Fk is connected
for all k P N). Show that

8
Ş

k=1

Fk is connected. Give an example to show that compactness is an

essential condition and we cannot just assume that Fk is a nest of closed connected sets.

Proof. Let K =
8
Ş

k=1

Fk. Then the nested set property implies that K ‰ H. Suppose the contrary
that there exist open sets U and V such that

1. K X U X V = H , 2. K X U ‰ H , 3. K X V ‰ H , 4. K Ď U Y V .

Define K1 = K X U A and K2 = K X V A. Then K1, K2 are non-empty closed sets (Check!!!) of K
such that

K = K1 Y K2 and K1 X K2 = H .

In other words, K is the disjoint union of two compact subsets K1 and K2. By (5) of Problem 7, there
exists x1 P K1 and x2 P K2 such that d(x1, x2) = d(K1, K2). Since K1 X K2 = H, ε0 ” d(x1, x2) ą 0;
thus the definition of the distance of sets implies that

ε0 ď d(x, y) @x P K1, y P K2 .

Define O1 =
Ť

xPK1

B
(
x,

ε0
3

)
and O2 =

Ť

yPK2

B
(
y,

ε0
3

)
. Note that

K1 Ď O1 , K2 Ď O2 and O1 X O2 = H .

Claim: There exists n P N such that Fn Ď O1 Y O2.



Proof. Suppose the contrary that for each n0 P N, Fn0 Ę O1 Y O2. Then

Fn X OA
1 X OA

2 = Fn X (O1 Y O2)
A ‰ H @n P N .

Since O1 and O2 are open, Fn X OA
1 X OA

2 is a nest of non-empty compact sets; thus the nested set
property shows that

K X OA
1 X OA

2 =
8
č

n=1

(Fn X OA
1 X OA

2

)
‰ H ;

thus K Ę O1 Y O2, a contradiction. ˝

Having established the claim, by the fact that K1 Ď Fn0 X O1 and K2 Ď Fn0 X O2, we find that

Fn0 X O1 ‰ H and Fn0 X O2 ‰ H .

Together with the fact that Fn0 X O1 X O2 = H and Fn0 Ď O1 Y O2, we conclude that Fn0 is
disconnected, a contradiction.

The compactness of Fn is crucial to obtain the result or we will have counter-examples. For
example, let Fk = R2z(´k, k) ˆ (´1, 1). Then clearly Fk is closed but not bounded (hence Fk

is not compact). Moreover, Fk Ě Fk+1 for all k P N; thus tFku8
k=1 is a nest of sets. However,

8
Ş

k=1

Fk = R2zR ˆ (´1, 1) which is disconnected and is the union of two disjoint closed set R ˆ [1,8)

and R ˆ (´8,´1]. Therefore, if tFku8
k=1 is a nest of closed connected sets, it is possible that

8
Ş

k=1

Fk

is disconnected. ˝

Problem 14. Let tAku8
k=1 be a family of connected subsets of M , and suppose that A is a connected

subset of M such that Ak XA ‰ H for all k P N. Show that the union
(
Ť

kPN
Ak

)
YA is also connected.

Proof. By the induction argument, it suffices to show that if A and B are connected sets and
A X B ‰ H, then A Y B is connected. Suppose the contrary that there exist open sets U and
V such that

1.
(
A Y B

)
X U X V = H ,

2.
(
A Y B

)
X U ‰ H ,

3.
(
A Y B

)
X V ‰ H ,

4.
(
A Y B

)
Ď U Y V .

Note that 1 and 4 implies that A X U X V = H and A Ď U Y V ; thus by the connectedness of A,
either A X U = H or A X V = H. W.L.O.G., we assume that A X U = H so that A Ď V . Then
1 implies that B X U X V = H, 2 implies that B X U ‰ H, and 4 implies that B Ď U Y V . Next
we show that B X V ‰ H to reach a contradiction (to that B is connected). Suppose the contrary
that B X V = H. Then 3 implies that A X B Ď A = A X V ‰ H so that B X V Ě A X B ‰ H, a
contradiction. ˝



Problem 15. Let A,B Ď M and A is connected. Suppose that AXB ‰ H and AXBA ‰ H. Show
that A X BB ‰ H.

Proof. Suppose the contrary that A X BB = H. Let U = int(B) and V = int(BA). If B̊ = H,
then BB = sB Ě B; thus the assumption that A X B ‰ H implies that A X BB ‰ H. Similarly, if
int(BA) = H, then A X BB ‰ H.

Now suppose that U and V are non-empty open sets. If x R U YV , then x P BB; thus (U YV )A Ď

BB and the assumption that A X BB = H further implies that A Ď U Y V . Moreover, U X V = H;
thus A X U X V = H. Now we prove that A X U ‰ H and A X V ‰ H to reach a contradiction.

Suppose the contrary that AXU = H. Then AXB Ď AX sB = AX(UYBB) = H, a contradiction.
Therefore, AXU = H. Similarly, if AXV = H, AXBA Ď AXĎBA = AX(V YBBA) = AX(V YBB) = H,
a contradiction. ˝

Problem 16. Let (M,d) be a metric space and A be a non-empty subset of M . A maximal connected
subset of A is called a connected component of A.

1. Let a P A. Show that there is a unique connected components of A containing a.

2. Show that any two distinct connected components of A are disjoint. Therefore, A is the disjoint
union of its connected components.

3. Show that every connected component of A is a closed subset of A.

4. If A is open, prove that every connected component of A is also open. Therefore, when M = Rn,
show that A has at most countable infinite connected components.

5. Find the connected components of the set of rational numbers or the set of irrational numbers
in R.

Proof. 1. Let F be the family F =
␣

C Ď A
ˇ

ˇx P C and C is connected
(

. We note that F is not
empty since txu P F . Let B =

Ť

CPF

C. It then suffices to show that B is connected (since if so,

then it is the maximal connected subset of A containing x).

Claim: A subset A Ď M is connected if and only if every continuous function defined on A

whose range is a subset of t0, 1u is constant.

Proof. “ñ” Assume that A is connected and f : A Ñ t0, 1u is a continuous function, and δ =

1/2. Suppose the contrary that f´1(t0u) ‰ H and f´1(t1u) ‰ H. Then A = f´1((´δ, δ))

and B = f´1((1´ δ, 1+ δ)) are non-empty set. Moreover, the continuity of f implies that
A and B are open relative to A; thus there exist open sets U and V such that

f´1((´δ, δ)) = U X A and f´1((1 ´ δ, 1 + δ)) = V X A .

Then

(1) A X U X V = f´1((´δ, δ)) X f´1((1 ´ δ, 1 + δ)) = H ,



(2) A X U ‰ H and A X V ‰ H ,
(3) A Ď U Y V since the range of f is a subset of t0, 1u ;

thus A is disconnect, a contradiction.

“ð” Suppose the contrary that A is disconnected so that there exist open sets U and V such
that

(1) A X U X V = H , (2) A X U ‰ H , (3) A X V ‰ H , (4) A Ď U Y V .

Let f : A Ñ R be defined by

f(x) =

"

0 if x P A X U ,
1 if x P A X V .

We first prove that f is continuous on A. Let a P A. Then a P A X U or a P A X V .
Suppose that a P A X U . In particular a P U ; thus the openness of U provides r ą 0 such
that B(a, r) Ď U . Note that if x P B(a, r) X A, then x P A Ď U ; thus

ˇ

ˇf(x) ´ f(a)
ˇ

ˇ = 0 @x P B(a, r) X A

which shows the continuity of f at a. Similar argument can be applied to show that f is
continuous at a P A X V . ˝

Now let f : B Ñ t0, 1u be a continuous function. Let y P B. Then y P C for some C P F .
Since C is a connected set, f : C Ñ t0, 1u is a constant; thus by the fact that x P C, we must
have f(x) = f(y). Therefore, f(y) = f(x) for all y P B; thus f : B Ñ t0, 1u is a constant. The
claim then shows that B is connected.

2. By Problem 14, the union of two overlapping connected sets is connected; thus distinct con-
nected components of A are disjoint.

3. Let C be a connected component of A.

Claim: sC X A is connected.

Proof. Suppose the contrary that there exist open sets U and V such that

(1) sC X A X U X V = H , (2) sC X A X U ‰ H , (3) sC X A X V ‰ H , (4) sC X A Ď U Y V .

Note that (1) and (4) implies that C X U X V = H and C Ď U Y V since C Ď sC X A. If
C X U = H, then C Ď U A; thus the closedness of U A implies that sC Ď U A which shows that
sCXAXU = H, a contradiction. Therefore, CXU ‰ H. Similarly, CXV ‰ H, so we establish
that C is disconnected, a contradiction. ˝

Having established that sC X A is connected, we immediately conclude that C = sC X A since
C Ď sC X A and C is the largest connected component of A containing points in C.



4. Suppose that A is open and C is a connected component of A. Let x P C. Then x P A;
thus there exists r ą 0 such that B(x, r) Ď A. Note that B(x, r) is a connected set and
B(x, r) X C Ě txu ‰ H. Therefore, Problem 14 implies that B(x, r) Y C is a connected subset
of A containing x. Since C is the largest connected subset of A containing x, we must have
B(x, r) Y C = C; thus B(x, r) Ď C.

If M = Rn, then each connected component contains a point whose components are all rational.
Since Qn is countable, we find that an open set in Rn has countable connected components.

5. In (R, | ¨ |) every connected set is an interval or a set of a single point. Since Q and
QA do not contain any intervals, the connected component of Q and QA are points. ˝


