Exercise Problem Sets 8

Nov．04． 2022

Definition 0．1．Let (M, d) be a normed vector space，and A be a subset of M ．
1．A point $x \in M$ is called an accumulation point of A if there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in $A \backslash\{x\}$ such that $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to x ．
2．A point $x \in A$ is called an isolated point（孤立點）（of A ）if there exists no sequence in $A \backslash\{x\}$ that converges to x ．

3．The derived set of A is the collection of all accumulation points of A ，and is denoted by A^{\prime} ．
Problem 1．Let (M, d) be a metric space，and A be a subset of M ．Show that $A \supseteq A^{\prime}$ if and only if A is closed．

Proof．＂\Leftarrow＂Note that 2 of Problem 5 of Exercise 7 implies that $\bar{A} \supseteq A^{\prime}$ ；thus if A is closed， $A=\bar{A} \supseteq A^{\prime}$.
＂\Rightarrow＂In 2 of Problem 5 of Exercise 7，we establish that $\bar{A}=A \cup A^{\prime}$ ．Therefore，if $A \supseteq A^{\prime}$ ，we have $\bar{A}=A \cup A^{\prime}=A$ which shows that A is closed．

Problem 2．Show that the derived set of a set（in a metric space）is closed．
Proof．Let (M, d) be a metric space，and A be a subset of M ．The goal is to show that A^{\prime} is closed （and this is equivalent of showing that $\left(A^{\prime}\right)^{\mathrm{C}}$ is open）．Let $y \notin A^{\prime}$ ．Then there exists $\varepsilon>0$ such that

$$
B(y, \varepsilon) \cap(A \backslash\{y\})=(B(y, \varepsilon) \backslash\{y\}) \cap A=\varnothing .
$$

Then $A \subseteq(B(y, \varepsilon) \backslash\{y\})^{\complement}$ ．Since

$$
(B(y, \varepsilon) \backslash\{y\})^{\complement}=\left(B(y, \varepsilon) \cap\{y\}^{\complement}\right)^{\complement}=B(y, \varepsilon)^{\complement} \cup\{y\},
$$

$(B(y, \varepsilon) \backslash\{y\})^{\text {c }}$ is closed．Therefore，Theorem 3.5 in the lecture note implies that

$$
\bar{A} \subseteq(B(y, \varepsilon) \backslash\{y\})^{\complement} \quad \text { or equivalently, } \quad \bar{A} \cap B(y, \varepsilon) \backslash\{y\}=\varnothing .
$$

Since $\bar{A}=A \cup A^{\prime}$ ，the equality above implies that

$$
A^{\prime} \cap B(y, \varepsilon) \backslash\{y\}=\varnothing ;
$$

thus the fact that $y \notin A^{\prime}$ implies that $B(y, \varepsilon) \cap A^{\prime}=\varnothing$ ．
Problem 3．Let $A \subseteq \mathbb{R}^{n}$ ．Define the sequence of sets $A^{(m)}$ as follows：$A^{(0)}=A$ and $A^{(m+1)}=$ the derived set of $A^{(m)}$ for $m \in \mathbb{N}$ ．Complete the following．

1．Prove that each $A^{(m)}$ for $m \in \mathbb{N}$ is a closed set；thus $A^{(1)} \supseteq A^{(2)} \supseteq \cdots$ ．
2. Show that if there exists some $m \in \mathbb{N}$ such that $A^{(m)}$ is a countable set, then A is countable.
3. For any given $m \in \mathbb{N}$, is there a set A such that $A^{(m)} \neq \varnothing$ but $A^{(m+1)}=\varnothing$?
4. Let A be uncountable. Then each $A^{(m)}$ is an uncountable set. Is it possible that $\bigcap_{m=1}^{\infty} A^{(m)}=\varnothing$?
5. Let $A=\left\{\left.\frac{1}{m}+\frac{1}{k} \right\rvert\, m-1>k(k-1), m, k \in \mathbb{N}\right\}$. Find $A^{(1)}, A^{(2)}$ and $A^{(3)}$.

Proof. 1. See Problem 2 for that A^{\prime} is closed for all $A \subseteq M$. Moreover, Problem 1 shows that $A \supseteq A^{\prime}$ if A is closed (in fact, A is closed if and only if $A \supseteq A^{\prime}$). Therefore, knowing that $A^{(m)}$ is closed for all $m \in \mathbb{N}$, we obtain that $A^{(m)} \supseteq A^{(m+1)}$ for all $m \in \mathbb{N}$.
2. Note that $A \backslash A^{\prime}$ consists of all isolated points of A. For $m \in \mathbb{N}$, define $B^{(m-1)}=A^{(m-1)} \backslash A^{(m)}$. Then $B^{(m-1)}$ consists of isolated points of $A^{(m-1)}$; thus $B^{(m-1)}$ is countable for all $m \in \mathbb{N}$. Since for any subset A of M, we have

$$
A \subseteq\left(A \backslash A^{\prime}\right) \cup A^{\prime}
$$

and equality holds if A is closed, 1 implies that

$$
\begin{aligned}
A & \subseteq\left(A \backslash A^{(1)}\right) \cup A^{(1)}=B^{(0)} \cup A^{(1)}=B^{(0)} \cup\left[\left(A^{(1)} \backslash A^{(2)}\right) \cup A^{(2)}\right]=B^{(0)} \cup B^{(1)} \cup A^{(2)} \\
& =\cdots=B^{(0)} \cup B^{(1)} \cup \cdots \cup B^{(m-1)} \cup A^{(m)} .
\end{aligned}
$$

If $A^{(m)}$ is countable, we find that A is a subset of a finite union of countable sets; thus A is countable.
4. By 2 , if $A^{(m)}$ is countable for some $m \in \mathbb{N}$, then A is countable; thus if A is uncountable, $A^{(m)}$ must be uncountable for all $m \in \mathbb{N}$.
5. For each $k \in \mathbb{N}$, let $B_{k}=\left\{\left.\frac{1}{m}+\frac{1}{k} \right\rvert\, m-1>k(k-1), m, k \in \mathbb{N}\right\}$. Then $A=\bigcup_{k=1}^{\infty} B_{k}$. Moreover, for each $k \in \mathbb{N}$,

$$
\sup B_{k}=\frac{1}{k(k-1)+2}+\frac{1}{k} \quad \text { and } \quad \inf B_{k}=\frac{1}{k}
$$

thus $\sup B_{k+1}<\inf B_{k}$ for each $k \in \mathbb{N}$. Therefore, B_{k+1} is on the left of B_{k} for each $k \in \mathbb{N}$. We also note that every element in A is an isolated point of A.

Suppose that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a convergent sequence in A.
(a) Suppose that there exists $k \in \mathbb{N}$ such that $\left\{n \in \mathbb{N} \mid x_{n} \in B_{k}\right\}=\infty$. Then $\lim _{n \rightarrow \infty} x_{n} \in \overline{B_{k}}$.
(b) Suppose that for all $k \in \mathbb{N}$ we have $\left\{n \in \mathbb{N} \mid x_{n} \in B_{k}\right\}<\infty$. Then there exists a subsequence $\left\{x_{n_{j}}\right\}_{j=1}^{\infty}$ of $\left\{x_{n}\right\}_{n=1}^{\infty}$ satisfying that $x_{n_{j+1}}<x_{n_{j}}$ for all $j \in \mathbb{N}$. Such a subsequence must converge to 0 since for each $k \in \mathbb{N}$ only finitely many terms of $x_{n_{j}}$ belongs to the set $B_{1} \cup B_{2} \cup \cdots \cup B_{k}$ while the supremum of the rest of the subsequence is not greater than $\inf B_{k}$.

Therefore, by the fact that $\overline{B_{k}}=B_{k} \cup\left\{\frac{1}{k}\right\}$, we find that

$$
\bar{A}=A \cup\left\{\left.\frac{1}{k} \right\rvert\, k \in \mathbb{N}\right\} \cup\{0\} .
$$

Then the fact that every point in A is an isolated point of A implies that

$$
A^{\prime}=\bar{A} \backslash \text { collection of isolated point of } A=\left\{\left.\frac{1}{k} \right\rvert\, k \in \mathbb{N}\right\} \cup\{0\}
$$

Noting that every point of A^{\prime} except $\{0\}$ is an isolated point of A^{\prime}, we have $A^{(2)}=\{0\}$ so that $A^{(3)}=\varnothing$.
3. Following 5 , we have a clear picture how to construct such a set. Let

$$
A_{m}=\left\{\left.\frac{1}{i_{1}}+\frac{1}{i_{2}}+\cdots+\frac{1}{i_{m}} \right\rvert\, i_{j} \in \mathbb{N} \text { and } i_{j+1}-1>i_{j}\left(i_{j}-1\right) \text { for all } 1 \leqslant j \leqslant m\right\}
$$

Then $A_{m}^{\prime}=A_{m-1} \cup\{0\}, A_{m}^{(2)}=A_{m-2} \cup\{0\}, \cdots, A_{m}^{(k)}=A_{m-k} \cup\{0\}$ if $m>k$, $A_{m}^{(m)}=\{0\}$ and $A_{m}^{(m+1)}=\varnothing$.

Problem 4. Recall that a cluster point x of a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ satisfies that

$$
\forall \varepsilon>0, \#\left\{n \in \mathbb{N} \mid x_{n} \in B(x, \varepsilon)\right\}=\infty
$$

Show that the collection of cluster points of a sequence (in a metric space) is closed.
Proof. Let (M, d) be a metric space, $\left\{x_{k}\right\}_{k=1}^{\infty}$ be a sequence in M, and A be the collection of cluster points of $\left\{x_{k}\right\}_{k=1}^{\infty}$. We would like to show that $A \supseteq \bar{A}$.

Let $y \in A^{\complement}$. Then y is not a cluster point of $\left\{x_{k}\right\}_{k=1}^{\infty}$; thus

$$
\exists \varepsilon>0 \ni \#\left\{n \in \mathbb{N} \mid x_{n} \in B(y, \varepsilon)\right\}<\infty
$$

For $z \in B(y, \varepsilon)$, let $r=\varepsilon-d(y, z)>0$. Then $B(z, r) \subseteq B(y, \varepsilon)$ (see Figure 1 or check rigorously using the triangle inequality). As a consequence, $\#\left\{n \in \mathbb{N} \mid x_{n} \in B(z, r)\right\}<\infty$ which implies that $z \notin A$.

Figure 1: $B(z, \varepsilon-d(y, z)) \subseteq B(y, \varepsilon)$ if $z \in B(y, \varepsilon)$
Therefore, if $z \in B(y, \varepsilon)$ then $z \in A^{\complement}$; thus $B(y, \varepsilon) \cap A=\varnothing$. We then conclude that if $y \in A^{\complement}$ then $y \notin \bar{A}$.

Problem 5. Let $(\mathcal{V},\|\cdot\|)$ ba a normed vector space, and C be a non-empty convex set in \mathcal{V}.

1. Show that \bar{C} is convex.
2. Show that if $\boldsymbol{x} \in \dot{C}$ and $\boldsymbol{y} \in \bar{C}$, then $(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y} \in \dot{C}$ for all $\lambda \in(0,1)$. This result is sometimes called the line segment principle.
3. Show that \dot{C} is convex (you may need the conclusion in 2 to prove this).
4. Show that $\operatorname{cl}(\stackrel{\circ}{C})=\operatorname{cl}(C)$.
5. Show that $\operatorname{int}(\bar{C})=\operatorname{int}(C)$.

Hint: 2. Prove by contradiction.
3 and 4. Use the line segment principle.
5. Show that $\boldsymbol{x} \in \operatorname{int}(\bar{C})$ can be written as $(1-\lambda) \boldsymbol{y}+\lambda \boldsymbol{z}$ for some $\boldsymbol{y} \in \stackrel{\circ}{C}$ and $\boldsymbol{z} \in B(\boldsymbol{x}, \varepsilon) \subseteq \bar{C}$.

Proof. 1. Let $\boldsymbol{x}, \boldsymbol{y} \in \bar{C}$ and $0 \leqslant \lambda \leqslant 1$ be given. Then there exist sequences $\left\{\boldsymbol{x}_{k}\right\}_{k=1}^{\infty}$ and $\left\{\boldsymbol{y}_{k}\right\}_{k=1}^{\infty}$ in C such that $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}$ and $\boldsymbol{y}_{k} \rightarrow \boldsymbol{y}$ as $k \rightarrow \infty$. Since C is convex, $(1-\lambda) \boldsymbol{x}_{k}+\lambda \boldsymbol{y}_{k} \in C$ for each $k \in \mathbb{N}$; thus by the fact that $C \subseteq \bar{C},(1-\lambda) \boldsymbol{x}_{k}+\lambda \boldsymbol{y}_{k} \in \bar{C}$ for each $k \in \mathbb{N}$. Since $(1-\lambda) \boldsymbol{x}_{k}+\lambda \boldsymbol{y}_{k} \rightarrow(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y}$ as $k \rightarrow \infty$ and \bar{C} is closed, we must have $(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y} \in \bar{C}$; thus \bar{C} is convex if C is convex.
2. Suppose the contrary that there exists $\lambda \in(0,1)$ such that $(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y} \notin \dot{C}$. Then for each $k \in \mathbb{N}$, there exists $\boldsymbol{z}_{k} \notin C$ such that

$$
\left\|(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y}-\boldsymbol{z}_{k}\right\|<\frac{1}{k} \quad \forall k \in \mathbb{N} .
$$

Since $\boldsymbol{y} \in \bar{C}$, there exists a sequence $\left\{\boldsymbol{y}_{k}\right\}_{k=1}^{\infty} \in C$ satisfying

$$
\left\|\boldsymbol{y}_{k}-\boldsymbol{y}\right\|<\frac{1}{\lambda k} \quad \forall k \in N .
$$

Therefore, if $k \in N$,

$$
\left\|(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y}_{k}-\boldsymbol{z}_{k}\right\| \leqslant\left\|(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y}-\boldsymbol{z}_{k}\right\|+\left\|\lambda\left(\boldsymbol{y}-\boldsymbol{y}_{k}\right)\right\|<\frac{2}{k}
$$

thus

$$
\left\|\boldsymbol{x}-\frac{\boldsymbol{z}_{k}-\lambda \boldsymbol{y}_{k}}{1-\lambda}\right\|<\frac{2}{k(1-\lambda)} \quad \forall k \in \mathbb{N} .
$$

Since $\boldsymbol{x} \in \dot{C}$, there exists $N>0$ such that $B\left(\boldsymbol{x}, \frac{2}{(1-\lambda) N}\right) \subseteq C$; thus $\frac{\boldsymbol{z}_{k}-\lambda \boldsymbol{y}_{k}}{1-\lambda} \in C$ whenever $k \geqslant N$. By the convexity of C,

$$
\boldsymbol{z}_{k}=(1-\lambda) \frac{\boldsymbol{z}_{k}-\lambda \boldsymbol{y}_{k}}{1-\lambda}+\lambda \boldsymbol{y}_{k} \in C
$$

a contradiction.
3. Let $\boldsymbol{x}, \boldsymbol{y} \in \dot{C}$. By the line segment principle, $(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y} \in \dot{C}$ for all $\lambda \in(0,1)$ (since $\dot{C} \subseteq \bar{C}$ so that $y \in \bar{C})$. This further implies that $(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y} \in \dot{C}$ for all $\lambda \in[0,1]$ since $\boldsymbol{x}, \boldsymbol{y} \in \dot{C}$; thus \dot{C} is convex.
4. It suffices to show that $\operatorname{cl}(\stackrel{\circ}{C}) \supseteq \operatorname{cl}(C)$. Let $\boldsymbol{x} \in \operatorname{cl}(C)$. Pick any $\boldsymbol{y} \in \dot{C}$. By the line segment principle,

$$
\boldsymbol{x}_{k} \equiv\left(1-\frac{1}{k}\right) \boldsymbol{x}+\frac{1}{k} \boldsymbol{y} \in \dot{C} \quad \forall k \geqslant 2 .
$$

Since $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}$ as $k \rightarrow \infty$, we find that $\boldsymbol{x} \in \operatorname{cl}(\stackrel{\circ}{C})$.
5. It suffices to show that $\operatorname{int}(\bar{C}) \subseteq \operatorname{int}(C)$. Let $\boldsymbol{x} \in \operatorname{int}(\bar{C})$. Then there exists $\varepsilon>0$ such that $B(\boldsymbol{x}, \varepsilon) \subseteq \bar{C}$. Let $\boldsymbol{y} \in \operatorname{int}(C)$. If $\boldsymbol{y}=\boldsymbol{x}$, then $\boldsymbol{x} \in \operatorname{int}(C)$. If $\boldsymbol{y} \neq \boldsymbol{x}$, define $\boldsymbol{z}=\boldsymbol{x}+\alpha(\boldsymbol{x}-\boldsymbol{y})$, where

$$
\alpha=\frac{\varepsilon}{2\|\boldsymbol{x}-\boldsymbol{y}\|} .
$$

Then $\|\boldsymbol{x}-\boldsymbol{z}\|=\frac{\varepsilon}{2}$; thus $\boldsymbol{z} \in B(\boldsymbol{x}, \varepsilon)$ which further implies that $\boldsymbol{z} \in \bar{C}$. By the line segment principle implies that $(1-\lambda) \boldsymbol{y}+\lambda \boldsymbol{z} \in \dot{C}$ for all $\lambda \in(0,1)$. Taking $\lambda=\frac{1}{1+\alpha}$, we find that

$$
(1-\lambda) \boldsymbol{y}+\lambda \boldsymbol{z}=\frac{\alpha}{1+\alpha} \boldsymbol{y}+\frac{1}{1+\alpha}(\boldsymbol{x}+\alpha(\boldsymbol{x}-\boldsymbol{y}))=\boldsymbol{x}
$$

which shows that $\boldsymbol{x} \in \operatorname{int}(C)$.
Problem 6. Let $(\mathcal{V},\|\cdot\|)$ be a normed vector space. Show that for all $\boldsymbol{x} \in \mathcal{V}$ and $r>0$,

$$
\operatorname{int}(B[\boldsymbol{x}, r])=B(\boldsymbol{x}, r)
$$

Is the identity above true in general metric space?
Proof. Let $\boldsymbol{y} \in \mathcal{V}$ such that $\|\boldsymbol{x}-\boldsymbol{y}\|=r$. Then $\boldsymbol{x}+\lambda(\boldsymbol{y}-\boldsymbol{x}) \in B[\boldsymbol{x}, r]^{c}$ for all $|\lambda|>1$. In particular, $\boldsymbol{y}_{n} \equiv \boldsymbol{x}+\left(1+\frac{1}{n}\right)(\boldsymbol{y}-\boldsymbol{x}) \in B[\boldsymbol{x}, r]^{\mathrm{c}}$ for all $n \in \mathbb{N}$. Moreover,

$$
\left\|\boldsymbol{y}_{n}-\boldsymbol{y}\right\|=\frac{1}{n}\|\boldsymbol{x}-\boldsymbol{y}\|=\frac{r}{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Therefore, $\lim _{n \rightarrow \infty} \boldsymbol{y}_{n}=\boldsymbol{y}$ which implies that $\boldsymbol{y} \in \partial B[\boldsymbol{x}, r]$ (since $\boldsymbol{y} \in B[\boldsymbol{x}, r]$ and \boldsymbol{y} is the limit of a sequence from $B[\boldsymbol{x}, r]^{c}$); thus

$$
\{\boldsymbol{y} \in \mathcal{V} \mid\|\boldsymbol{x}-\boldsymbol{y}\|=r\} \subseteq \partial B[\boldsymbol{x}, r] .
$$

On the other hand, $B(\boldsymbol{x}, r)$ is open and $B[\boldsymbol{x}, r]=B(\boldsymbol{x}, r) \cup\{\boldsymbol{y} \in \mathcal{V} \mid\|\boldsymbol{x}-\boldsymbol{y}\|=r\}$. Therefore, $B(x, r)$ is the largest open set contained inside $B[\boldsymbol{x}, r]$; thus $B(\boldsymbol{x}, r)=\operatorname{int}(B[\boldsymbol{x}, r])$.

The identity is not true in general metric space. For example, consider the metric space (M, d_{0}), where d_{0} is the discrete metric on set M. For each $x \in M, B(x, 1)=\{x\}$ but $B[x, 1]=M$. Since M is open, $\operatorname{int}(M)=M$; thus $\operatorname{int}(B[x, 1]) \neq B(x, 1)$ as long as $\# M>1$.

Problem 7. Let $\mathcal{M}_{n \times n}$ denote the collection of all $n \times n$ square real matrices, and $\left(\mathcal{M}_{n \times n},\|\cdot\|_{p, q}\right)$ be a normed space with norm $\|\cdot\|_{p, q}$ given in Problem 6 of Exercise 5. Show that the set

$$
\mathrm{GL}(n) \equiv\left\{A \in \mathcal{M}_{n \times n} \mid \operatorname{det}(A) \neq 0\right\}
$$

is an open set in $\mathcal{M}_{n \times n}$. The set $\mathrm{GL}(n)$ is called the general linear group.
Proof. Let $A \in \operatorname{GL}(n)$ be given. Then $A^{-1} \in \mathcal{M}_{n \times n}$ exists; thus

$$
\left\|A^{-1} \boldsymbol{x}\right\|_{2} \leqslant\left\|A^{-1}\right\|_{2,2}\|\boldsymbol{x}\|_{2} \quad \forall \boldsymbol{x} \in \mathbb{R}^{n}
$$

which, using the fact that $A: \mathbb{R}^{n} \xrightarrow[\text { onto }]{1-1} \mathbb{R}^{n}$, implies that

$$
\frac{1}{\left\|A^{-1}\right\|_{2,2}}\|\boldsymbol{x}\|_{2} \leqslant\|A \boldsymbol{x}\|_{2} \quad \forall \boldsymbol{x} \in \mathbb{R}^{n}
$$

Let $r=\frac{1}{\left\|A^{-1}\right\|_{2,2}}$. For $B \in B(A, r)$, we have $\|A-B\|_{2,2}<r$; thus for each $\boldsymbol{x} \in \mathbb{R}^{n}$,

$$
r\|\boldsymbol{x}\|_{2}=\frac{1}{\left\|A^{-1}\right\|_{2,2}}\|\boldsymbol{x}\|_{2} \leqslant\|A \boldsymbol{x}\|_{\mathbb{R}^{n}} \leqslant\|(A-B) \boldsymbol{x}\|_{2}+\|B \boldsymbol{x}\|_{2} \leqslant\|A-B\|_{2,2}\|\boldsymbol{x}\|_{\mathbb{R}^{n}}+\|B \boldsymbol{x}\|_{2}
$$

which further implies that

$$
\|B \boldsymbol{x}\|_{2} \geqslant\left(r-\|A-B\|_{2,2}\right)\|\boldsymbol{x}\|_{2} \quad \forall \boldsymbol{x} \in \mathbb{R}^{n}
$$

Therefore, $B \boldsymbol{x}=\mathbf{0}$ if and only if $\boldsymbol{x}=\mathbf{0}$ which shows that B is invertible; thus we established that

$$
\text { for each } A \in \mathrm{GL}(n) \text {, there exists } r=\frac{1}{\left\|A^{-1}\right\|_{2,2}}>0 \text { such that } B(A, r) \subseteq \mathrm{GL}(n) \text {. }
$$

This shows that $\mathrm{GL}(n)$ is open.
Problem 8. Show that every open set in \mathbb{R} is the union of at most countable collection of disjoint open intervals; that is, if $U \subseteq \mathbb{R}$ is open, then

$$
U=\bigcup_{k \in \mathcal{I}}\left(a_{k}, b_{k}\right)
$$

where \mathcal{I} is countable, and $\left(a_{k}, b_{k}\right) \cap\left(a_{\ell}, b_{\ell}\right)=\varnothing$ if $k \neq \ell$.
Hint: For each point $x \in U$, define $L_{x}=\{y \in \mathbb{R} \mid(y, x) \subseteq U\}$ and $R_{x}=\{y \in \mathbb{R} \mid(x, y) \subseteq U\}$. Define $I_{x}=\left(\inf L_{x}, \sup R_{x}\right)$. Show that $I_{x}=I_{y}$ if $(x, y) \in U$ and if $(x, y) \nsubseteq U$ then $I_{x} \cap I_{y}=\varnothing$
Proof. As suggested in the hint, for each point $x \in U$ we define $L_{x}=\{y \in \mathbb{R} \mid(y, x) \subseteq U\}$ and $R_{x}=\{y \in \mathbb{R} \mid(x, y) \subseteq U\}$. We note that $a \equiv \inf L_{x} \notin U$ since if $a \in U$, by the openness of U there exists $r>0$ such that $(a-r, a+r) \subseteq U$ which implies that $(a-r, x) \subseteq U$ so that $a-r \in L_{x}$, a contradiction to the fact that $a=\inf L_{x}$. Similarly, $\sup R_{x} \notin U$. Therefore, $I_{x}=\left(\inf L_{x}, \sup L_{x}\right)$ is the maximal connected subset of U containing x.

If $x, y \in U$ and $(x, y) \subseteq U$, then $\left(L_{x}, y\right)=\left(L_{x}, x\right) \cup\{x\} \cup(x, y) \subseteq U$ which implies that $L_{x} \subseteq L_{y}$. On the other hand, if $z \in L_{y}$, then $z \leqslant x$ and $(z, x) \subseteq U$; thus $L_{y} \subseteq L_{x}$ which implies that $L_{x}=L_{y}$ if $x, y \in U$ and $(x, y) \subseteq U$. This shows that $I_{x}=I_{y}$ if $x, y \in U$ and $(x, y) \subseteq U$. Moreover, if $x, y \in U$ but $(x, y) \nsubseteq U$, then there exists $x<z<y$ such that $z \notin U$; thus $\sup R_{x} \leqslant z \leqslant \inf L_{y}$ which implies that $I_{x} \cap I_{y}=\varnothing$. Therefore, we establish that

1．if $x, y \in U$ and $(x, y) \subseteq U$ ，then $I_{x}=I_{y}$ ．
2．if $x, y \in U$ and $(x, y) \nsubseteq U$ ，then $I_{x} \cap I_{y}=\varnothing$ ．
This implies that U is the union of disjoint open intervals．Since every such open interval contains a rational number，we can denote each such open interval as I_{k} ，where k belongs to a countable index set \mathcal{I} ．Write $I_{k}=\left(a_{k}, b_{k}\right)$ ，then $U=\bigcup_{k \in \mathcal{I}}\left(a_{k}, b_{k}\right)$ ．

Problem 9．Let (M, d) be a metric space．A set $A \subseteq M$ is said to be perfect if $A=A^{\prime}$（so that there is no isolated points）．The Cantor set is constructed by the following procedure：let $E_{0}=[0,1]$ ． Remove the segment $\left(\frac{1}{3}, \frac{2}{3}\right)$ ，and let E_{1} be the union of the intervals

$$
\left[0, \frac{1}{3}\right],\left[\frac{2}{3}, 1\right] .
$$

Remove the middle thirds of these intervals，and let E_{2} be the union of the intervals

$$
\left[0, \frac{1}{9}\right],\left[\frac{2}{9}, \frac{3}{9}\right],\left[\frac{6}{9}, \frac{7}{9}\right],\left[\frac{8}{9}, 1\right] .
$$

Continuing in this way，we obtain a sequence of closed set E_{k} such that
（a）$E_{1} \supseteq E_{2} \supseteq E_{2} \supseteq \cdots ;$
（b）E_{n} is the union of 2^{n} intervals，each of length 3^{-n} ．
The set $C=\bigcap_{n=1}^{\infty} E_{n}$ is called the Cantor set．
1．Show that C is a perfect set．
2．Show that C is uncountable．
3．Find $\operatorname{int}(C)$ ．
Proof．1．Let $x \in C$ ．Then $x \in E_{N}$ for some $N \in \mathbb{N}$ ．For each $n \in \mathbb{N}, E_{n}$ is the union of disjoint closed intervals with length $\frac{1}{3^{n}}$ ，and ∂E_{n} consists of the end－points of these disjoint closed intervals whose union is E_{n} ．Therefore，there exists $x_{n} \in \partial E_{N+n-1} \backslash\{x\}$ such that $\left|x_{n}-x\right|<\frac{1}{3^{N-1+n}}$ ． Since $\partial E_{n} \subseteq C$ for each $n \in \mathbb{N}$ ，we find that $\left\{x_{n}\right\}_{n=1}^{\infty} \in C \backslash\{x\}$ ．Moreover， $\lim _{n \rightarrow \infty} x_{n}=x$ ；thus $x \in C^{\prime}$ which shows $C \subseteq C^{\prime}$ ．Since C is the intersection of closed sets，C is closed；thus

$$
C \subseteq C^{\prime} \subseteq \bar{C}=C
$$

so we establish that $C^{\prime}=C$ ．
2．For $x \in[0,1]$ ，write x in ternary expansion（三進位展開）；that is，

$$
x=0 . d_{1} d_{2} d_{3} \cdots \cdots .
$$

Here we note that repeated 2＇s are chosen by preference over terminating decimals．For example， we write $\frac{1}{3}$ as $0.02222 \cdots$ instead of 0.1 ．Define

$$
A=\left\{x=0 . d_{1} d_{2} d_{3} \cdots \mid d_{j} \in\{0,2\} \text { for all } j \in \mathbb{N}\right\}
$$

Note each point in ∂E_{n} belongs to A ；thus $A \subseteq C$ ．On the other hand，A has a one－to－one correspondence with $[0,1]\left(x=0 . d_{1} d_{2} \cdots \in A \Leftrightarrow y=0 \cdot \frac{d_{1}}{2} \frac{d_{2}}{2} \cdots \in[0,1]\right.$ ，where y is expressed in binary expansion（二進位展開）with repeated 1 ＇s instead of terminating decimals）．Since $[0,1]$ is uncountable，A is uncountable；thus C is uncountable．

3．If $\operatorname{int}(C)$ is non－empty，then by the fact that $\operatorname{int}(C)$ is open in $(R,|\cdot|)$ ，by Problem 7 the Cantor set C contains at least one interval (x, y) ．Note that there exists $N>0$ such that $|x-y|<\frac{1}{3^{n}}$ for all $n \geqslant N$ ．Since the length of each interval in E_{n} has length $\frac{1}{3^{n}}$ ，we find that if $n \geqslant N$ ，the interval (x, y) is not contained in any interval of E_{n} ．In other words，there must be $z \in(x, y)$ such that $z \in E_{n}^{\subset}$ which shows that
$(x, y) \nsubseteq \bigcap_{n=1}^{\infty} E_{n}$. Therefore， $\operatorname{int}(C)=\varnothing$.
Problem 10．Let \mathcal{V} be a vector fields over \mathbb{F} ，where $\mathbb{F}=\mathbb{R}$ or \mathbb{C} ，and $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{n}\right\} \subseteq \mathcal{V}$ is a basis for \mathcal{V} ；that is，every $\boldsymbol{x} \in \mathcal{V}$ can be uniquely expressed as

$$
\boldsymbol{x}=x^{(1)} \mathbf{e}_{1}+x^{(2)} \mathbf{e}_{2}+\cdots+x^{(n)} \mathbf{e}_{n}=\sum_{i=1}^{n} x^{(i)} \mathbf{e}_{i} .
$$

Define $\|\boldsymbol{x}\|_{2}=\left(\sum_{i=1}^{n}\left|x^{(i)}\right|^{2}\right)^{\frac{1}{2}}$ ．
1．Show that $\|\cdot\|_{2}$ is a norm on \mathcal{V} ．
2．Show that K is compact in $\left(\mathcal{V},\|\cdot\|_{2}\right)$ if and only if K is closed and bounded．
Proof．1．By Cauchy－Schwarz inequality．
2．It suffices to show the＂if＂direction．Let $\left\{\boldsymbol{x}_{k}\right\}_{k=1}^{\infty}$ be a sequence in K ．Write $\boldsymbol{x}_{k}=\sum_{i=1}^{n} x_{k}^{(i)} \mathbf{e}_{i}$ ． Since $\left\{\boldsymbol{x}_{k}\right\}_{k=1}^{\infty}$ is bounded，there exists $M>0$ such that

$$
\left\|\boldsymbol{x}_{k}\right\|_{2} \leqslant M \quad \forall k \in \mathbb{N} .
$$

Therefore，$\left|x_{k}^{(i)}\right| \leqslant M$ for all $k \in \mathbb{N}$ and $1 \leqslant i \leqslant n$ ；thus for each $1 \leqslant i \leqslant n,\left\{x_{k}^{(i)}\right\}_{k=1}^{\infty}$ is a bounded sequence in \mathbb{F} ．By the Bolzano－Weierstrass Theorem（treat \mathbb{C} as \mathbb{R}^{2} to apply the theorem），there exists a subsequence $\left\{\boldsymbol{x}_{k_{j}}\right\}_{j=1}^{\infty}$ such that $\left\{x_{k_{j}}^{(i)}\right\}_{j=1}^{\infty}$ converges to some $x^{(i)} \in \mathbb{F}$ ． Let $\boldsymbol{x}=\left(x^{(1)}, x^{(2)}, \cdots, x^{(n)}\right)$ ．Then

$$
\left\|\boldsymbol{x}_{k_{j}}-\boldsymbol{x}\right\|_{2}=\left(\sum_{i=1}^{n}\left|x_{k_{j}}^{(i)}-x^{(i)}\right|^{2}\right)^{\frac{1}{2}} \rightarrow 0 \text { as } j \rightarrow \infty
$$

thus the closedness of K implies that $\boldsymbol{x} \in K$ ．

Problem 11. Let (M, d) be a metric space.

1. Show that a closed subset of a compact set is compact.
2. Show that the union of a finite number of sequentially compact subsets of M is compact.
3. Show that the intersection of an arbitrary collection of sequentially compact subsets of M is sequentially compact.

Proof. 1. Let K be a compact set in M, F be a closed subset of K, and $\left\{x_{k}\right\}_{k=1}^{\infty}$ be a sequence in F. Then $\left\{x_{k}\right\}_{k=1}^{\infty}$ is a sequence in K; thus the sequential compactness of K implies that there exists a convergent subsequence $\left\{x_{k_{j}}\right\}_{j=1}^{\infty}$ with limit $x \in K$. Note that $\left\{x_{k_{j}}\right\}_{j=1}^{\infty}$ itself is a convergent sequence in F; thus the limit x of $\left\{x_{k_{j}}\right\}_{j=1}^{\infty}$ belongs to F by the closedness of F.
2. Let $K_{1}, K_{2}, \cdots, K_{N}$ be compact sets, and $K=\bigcup_{\ell=1}^{N} K_{\ell}$, and $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence in K. Then there exists $1 \leqslant \ell_{0} \leqslant N$ such that

$$
\#\left\{n \in \mathbb{N} \mid x_{n} \in K_{\ell_{0}}\right\}=\infty
$$

Let $\left\{x_{n_{k}}\right\}_{k=1}^{\infty} \subseteq K_{\ell_{0}}$. By the compactness of $K_{\ell_{0}}$, there exists a convergent subsequence $\left\{x_{n_{k_{j}}}\right\}_{j=1}^{\infty}$ of $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ with limit $x \in K_{\ell_{0}} \subseteq K$. Since $\left\{x_{n_{k_{j}}}\right\}_{j=1}^{\infty}$ is a subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$, we conclude that every sequence in K has a convergent subsequence with limit in K; thus K is compact.
3. Since every compact set is closed, the intersection of an arbitrary collection of compact sets of M is closed. By 1 , this intersection is also compact since the intersection is a closed set of any compact set (in the family).

Problem 12. Given $\left\{a_{k}\right\}_{k=1}^{\infty} \subseteq \mathbb{R}$ a bounded sequence, define

$$
A=\left\{x \in \mathbb{R} \mid \text { there exists a subsequence }\left\{a_{k_{j}}\right\}_{j=1}^{\infty} \text { such that } \lim _{j \rightarrow \infty} a_{k_{j}}=x\right\}
$$

Show that A is a non-empty sequentially compact set in \mathbb{R}. Furthermore, $\limsup _{k \rightarrow \infty} a_{k}=\sup A$ and $\liminf _{k \rightarrow \infty} a_{k}=\inf A$.
Proof. Note that A is the collection of cluster points of bounded sequence $\left\{a_{k}\right\}_{k=1}^{\infty}$; thus Problem 3 of Exercise 7 shows that A is closed. Moreover, A is bounded since $\left\{a_{k}\right\}_{k=1}^{\infty}$ is bounded; thus sup $A \in A$ and $\inf A \in A$. The desired result then follows from the fact that $\lim \sup a_{k}$ is the largest cluster point of $\left\{a_{k}\right\}_{k=1}^{\infty}$ and $\liminf _{k \rightarrow \infty} a_{k}$ is the least cluster point of $\left\{a_{k}\right\}_{k=1}^{\infty}$; thus $\limsup _{k \rightarrow \infty} a_{k}=\sup A \in A$ and $\liminf _{k \rightarrow \infty} a_{k}=\inf A \in A$.

Problem 13. Let $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
d(x, y)=\left\{\begin{array}{cl}
\left|x_{1}-y_{1}\right| & \text { if } x_{2}=y_{2}, \\
\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|+1 & \text { if } x_{2} \neq y_{2} .
\end{array} \text { where } x=\left(x_{1}, x_{2}\right) \text { and } y=\left(y_{1}, y_{2}\right) .\right.
$$

Problem 12 of Exercise 5 shows that d is a metric on \mathbb{R}^{2}. Consider the metric space $\left(\mathbb{R}^{2}, d\right)$.

1. Find $B(x, r)$ with $r<1, r=1$ and $r>1$.
2. Show that the set $\{c\} \times[a, b] \subseteq\left(\mathbb{R}^{2}, d\right)$ is closed and bounded.
3. Examine whether the set $\{c\} \times[a, b] \subseteq\left(\mathbb{R}^{2}, d\right)$ is sequentially compact or not.

Problem 14. Let ℓ^{2} be the collection of all sequences $\left\{x_{k}\right\}_{k=1}^{\infty} \subseteq \mathbb{R}$ such that $\sum_{k=1}^{\infty}\left|x_{k}\right|^{2}<\infty$. In other words,

$$
\ell^{2}=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \mid x_{k} \in \mathbb{R} \text { for all } k \in \mathbb{N}, \sum_{k=1}^{\infty}\left|x_{k}\right|^{2}<\infty\right\}
$$

Define $\|\cdot\|_{2}: \ell^{2} \rightarrow \mathbb{R}$ by

$$
\left\|\left\{x_{k}\right\}_{k=1}^{\infty}\right\|_{2}=\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{2}\right)^{\frac{1}{2}} .
$$

1. Show that $\|\cdot\|_{2}$ is a norm on ℓ^{2}. The normed space $\left(\ell^{2},\|\cdot\|\right)$ usually is denoted by ℓ^{2}.
2. Show that $\|\cdot\|_{2}$ is induced by an inner product.
3. Show that $\left(\ell^{2},\|\cdot\|_{2}\right)$ is complete.
4. Let $A=\left\{\boldsymbol{x} \in \ell^{2} \mid\|\boldsymbol{x}\|_{2} \leqslant 1\right\}$. Is A sequentially compact or not?

Proof. 1. Let $\left\{x_{k}\right\}_{k=1}^{\infty}$ and $\left\{y_{k}\right\}_{k=1}^{\infty}$ be elements in ℓ^{2} and $c \in \mathbb{R}$. Clearly $\left\|\left\{x_{k}\right\}_{k=1}^{\infty}\right\| \geqslant 0$ and $\left\|\left\{x_{k}\right\}_{k=1}^{\infty}\right\|=$ 0 if and only if $x_{k}=0$ for all $k \in \mathbb{N}$. Moreover,

$$
\left\|c\left\{x_{k}\right\}_{k=1}^{\infty}\right\|_{2}=\left\|\left\{c x_{k}\right\}_{k=1}^{\infty}\right\|_{2}=\left(\sum_{k=1}^{\infty}\left|c x_{k}\right|^{2}\right)^{\frac{1}{2}}=|c|\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{2}\right)^{\frac{1}{2}}=|c|\left\|\left\{x_{k}\right\}_{k=1}^{\infty}\right\|_{2} .
$$

Finally, since the 2-norm for \mathbb{R}^{n} is a norm, we must have

$$
\left(\sum_{k=1}^{n}\left|x_{k}+y_{k}\right|^{2}\right)^{\frac{1}{2}} \leqslant\left(\sum_{k=1}^{n}\left|y_{k}\right|^{2}\right)^{\frac{1}{2}}+\left(\sum_{k=1}^{n}\left|y_{k}\right|^{2}\right)^{\frac{1}{2}}
$$

Passing to the limit as $n \rightarrow \infty$, we find that

$$
\begin{aligned}
& \left\|\left\{x_{k}\right\}_{k=1}^{\infty}+\left\{y_{k}\right\}_{k=1}^{\infty}\right\|=\left\|\left\{x_{k}+y_{k}\right\}_{k=1}^{\infty}\right\|_{2}=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n}\left|x_{k}+y_{k}\right|^{2}\right)^{\frac{1}{2}} \\
& \quad \leqslant \lim _{n \rightarrow \infty}\left[\left(\sum_{k=1}^{n}\left|y_{k}\right|^{2}\right)^{\frac{1}{2}}+\left(\sum_{k=1}^{n}\left|y_{k}\right|^{2}\right)^{\frac{1}{2}}\right]=\left\|\left\{x_{k}\right\}_{k=1}^{\infty}\right\|_{2}+\left\|\left\{y_{k}\right\}_{k=1}^{\infty}\right\|_{2}
\end{aligned}
$$

Therefore, the triangle inequality for $\|\cdot\|_{2}$ holds.
2. The norm $\|\cdot\|_{2}$ is indeed the norm induced by the inner product

$$
\left\langle\left\{x_{k}\right\}_{k=1}^{\infty},\left\{y_{k}\right\}_{k=1}^{\infty}\right\rangle=\sum_{k=1}^{\infty} x_{k} y_{k} \quad\left\{x_{k}\right\}_{k=1}^{\infty},\left\{y_{k}\right\}_{k=1}^{\infty} \in \ell^{2}
$$

3. Let $\left\{\boldsymbol{x}_{k}\right\}_{k=1}^{\infty}$ be a Cauchy sequence. Write $\boldsymbol{x}_{k}=\left\{x_{\ell}^{(k)}\right\}_{\ell=1}^{\infty}$. Then for each $\ell \in \mathbb{N}$ the sequence $\left\{x_{\ell}^{(k)}\right\}_{k=1}^{\infty}$ is a Cauchy sequence in \mathbb{R}. In fact, for a given $\varepsilon>0$, there exists $N>0$ such that

$$
\left\|\boldsymbol{x}_{m}-\boldsymbol{x}_{n}\right\|_{2}<\varepsilon \quad \text { whenever } \quad m, n \geqslant N
$$

which implies that for each $\ell \in \mathbb{N}$,

$$
\left|x_{\ell}^{(m)}-x_{\ell}^{(n)}\right| \leqslant\left\|\boldsymbol{x}_{m}-\boldsymbol{x}_{n}\right\|_{2}<\varepsilon \quad \text { whenever } \quad m, n \geqslant N .
$$

By the completeness of $\mathbb{R}, \lim _{k \rightarrow \infty} x_{\ell}^{(k)}=x_{\ell}$ exists for each $\ell \in \mathbb{N}$. Define $\boldsymbol{x}=\left\{x_{\ell}\right\}_{\ell=1}^{\infty}$.
Claim: $\boldsymbol{x} \in \ell^{2}$.
Proof of claim: By Proposition 2.58 in the lecture note, every Cauchy sequence is bounded; thus there exists $M>0$ such that $\left\|\boldsymbol{x}_{k}\right\|_{2} \leqslant M$ for all $k \in \mathbb{N}$. This implies that

$$
\sum_{\ell=1}^{n}\left|x_{\ell}^{(k)}\right|^{2} \leqslant M^{2} \quad \forall k, n \in \mathbb{N}
$$

thus

$$
\sum_{\ell=1}^{n}\left|x_{\ell}\right|^{2}=\sum_{\ell=1}^{n} \lim _{k \rightarrow \infty}\left|x_{\ell}^{(k)}\right|^{2}=\lim _{k \rightarrow \infty} \sum_{\ell=1}^{n}\left|x_{\ell}^{(k)}\right|^{2} \leqslant M^{2} \quad \forall n \in \mathbb{N} .
$$

Therefore, $\|\boldsymbol{x}\|^{2}=\sum_{\ell=1}^{\infty}\left|x_{\ell}\right|^{2} \leqslant M^{2}$ which implies that $\boldsymbol{x} \in \ell^{2}$.
Next we show that $\left\{\boldsymbol{x}_{k}\right\}_{k=1}^{\infty}$ converges to \boldsymbol{x} (in ℓ^{2}). Let $\varepsilon>0$ be given. Since $\left\{\boldsymbol{x}_{k}\right\}_{k=1}^{\infty}$ is a Cauchy sequence, there exists $N>0$ such that

$$
\left\|\boldsymbol{x}_{m}-\boldsymbol{x}_{n}\right\|_{2}<\frac{\varepsilon}{2} \quad \text { whenever } \quad n, m \geqslant N .
$$

Then similar to the proof of claim, for each $r \in \mathbb{N}$ and $n \geqslant N$ we have

$$
\sum_{\ell=1}^{r}\left|x_{\ell}^{(n)}-x_{\ell}\right|^{2}=\sum_{\ell=1}^{r} \lim _{m \rightarrow \infty}\left|x_{\ell}^{(n)}-x_{\ell}^{(m)}\right|^{2}=\lim _{m \rightarrow \infty} \sum_{\ell=1}^{r}\left|x_{\ell}^{(n)}-x_{\ell}^{(m)}\right|^{2} \leqslant \lim _{m \rightarrow \infty}\left\|\boldsymbol{x}_{n}-\boldsymbol{x}_{m}\right\|_{2}^{2} \leqslant \frac{\varepsilon^{2}}{4} ;
$$

thus if $n \geqslant N$,

$$
\left\|\boldsymbol{x}_{n}-\boldsymbol{x}\right\|_{2}^{2}=\sum_{\ell=1}^{\infty}\left|x_{\ell}^{(n)}-x_{\ell}\right|^{2} \leqslant \frac{\varepsilon^{2}}{4}<\varepsilon .
$$

Therefore, $\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{\infty}$ converges to \boldsymbol{x} so that we established that every Cauchy sequence in $\left(\ell^{2},\|\cdot\|_{2}\right)$ converges to a point in ℓ^{2}. This shows that $\left(\ell^{2},\|\cdot\|_{2}\right)$ is complete.
4. Consider the sequence $\left\{\boldsymbol{x}_{k}\right\}_{k=1}^{\infty}$ in ℓ^{2} given by that $\boldsymbol{x}_{k}=\left\{x_{\ell}^{(k)}\right\}_{\ell=1}^{\infty}$ with $x_{\ell}^{(k)}=\delta_{k \ell}$, where $\delta_{k \ell}$ is the Kronecker delta. Then $\left\|\boldsymbol{x}_{k}\right\|_{2}=1$ for all $k \in \mathbb{N}$. On the other hand, if a subsequence of $\left\{x_{k}\right\}_{k=1}^{\infty}$ converges, it must converge to the zero sequence (since $x_{\ell}^{(k)}=0$ for all ℓ except $\ell=k$) so that $\lim _{j \rightarrow \infty}\left\|\boldsymbol{x}_{k}\right\|_{2}=0$, a contradiction.

Problem 15. Let A, B be two non-empty subsets in \mathbb{R}^{n}. Define

$$
d(A, B)=\inf \left\{\|x-y\|_{2} \mid x \in A, y \in B\right\}
$$

to be the distance between A and B. When $A=\{x\}$ is a point, we write $d(A, B)$ as $d(x, B)$ (which is consistent with the one given in Proposition 3.6 of the lecture note).
(1) Prove that $d(A, B)=\inf \{d(x, B) \mid x \in A\}$.
(2) Show that $\left|d\left(x_{1}, B\right)-d\left(x_{2}, B\right)\right| \leqslant\left\|x_{1}-x_{2}\right\|_{2}$ for all $x_{1}, x_{2} \in \mathbb{R}^{n}$.
(3) Define $B_{\varepsilon}=\left\{x \in \mathbb{R}^{n} \mid d(x, B)<\varepsilon\right\}$ be the collection of all points whose distance from B is less than ε. Show that B_{ε} is open and $\bigcap_{\varepsilon>0} B_{\varepsilon}=\operatorname{cl}(B)$.
(4) If A is sequentially compact, show that there exists $x \in A$ such that $d(A, B)=d(x, B)$.
(5) If A is closed and B is sequentially compact, show that there exists $x \in A$ and $y \in B$ such that $d(A, B)=d(x, y)$.
(6) If A and B are both closed, does the conclusion of (5) hold?

Proof. The proof of (1)-(4) does not rely on the structure of $\left(\mathbb{R}^{n},\|\cdot\|_{2}\right)$, so in the proofs of (1)-(4) we write $d(\boldsymbol{x}, \boldsymbol{y})$ instead of $\|\boldsymbol{x}-\boldsymbol{y}\|$.
(1) Define $f: A \times B \rightarrow \mathbb{R}$ by $f(\boldsymbol{a}, \boldsymbol{b})=d(\boldsymbol{a}, \boldsymbol{b})$. By Problem ??,

$$
\inf _{(a, b) \in A \times B} f(\boldsymbol{a}, \boldsymbol{b})=\inf _{\boldsymbol{a} \in A}\left(\inf _{\boldsymbol{b} \in B} f(\boldsymbol{a}, \boldsymbol{b})\right)=\inf _{\boldsymbol{b} \in B}\left(\inf _{\boldsymbol{a} \in A} f(\boldsymbol{a}, \boldsymbol{b})\right) .
$$

Since $\inf _{\boldsymbol{b} \in B} f(\boldsymbol{a}, \boldsymbol{b})=d(\boldsymbol{a}, B)$, we conclude that

$$
d(A, B)=\inf _{(a, b) \in A \times B} f(\boldsymbol{a}, \boldsymbol{b})=\inf _{\boldsymbol{a} \in A} d(\boldsymbol{a}, B) .
$$

(2) Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ and $\varepsilon>0$ be given. By the definition of infimum, there exists $\boldsymbol{z} \in B$ such that

$$
d(\boldsymbol{x}, B) \leqslant d(\boldsymbol{x}, \boldsymbol{z})<d(\boldsymbol{x}, B)+\varepsilon .
$$

By the definition of $d(\boldsymbol{y}, B)$ and the triangle inequality,

$$
d(\boldsymbol{y}, B) \leqslant d(\boldsymbol{y}, \boldsymbol{z}) \leqslant d(\boldsymbol{y}, \boldsymbol{x})+d(\boldsymbol{x}, \boldsymbol{z})<d(\boldsymbol{x}, \boldsymbol{y})+d(\boldsymbol{x}, B)+\varepsilon ;
$$

thus

$$
d(\boldsymbol{y}, B)-d(\boldsymbol{x}, B)<d(\boldsymbol{x}, \boldsymbol{y})+\varepsilon .
$$

A symmetric argument (switching \boldsymbol{x} and $\boldsymbol{y})$ also shows that $d(\boldsymbol{x}, B)-d(\boldsymbol{y}, B)<d(\boldsymbol{x}, \boldsymbol{y})+\varepsilon$. Therefore,

$$
|d(\boldsymbol{x}, B)-d(\boldsymbol{y}, B)|<d(\boldsymbol{x}, \boldsymbol{y})+\varepsilon .
$$

Since $\varepsilon>0$ is given arbitrarily, we conclude that

$$
|d(\boldsymbol{x}, B)-d(\boldsymbol{y}, B)| \leqslant d(\boldsymbol{x}, \boldsymbol{y}) .
$$

(3) Let $\boldsymbol{x} \in B_{\varepsilon}$. Define $r=\varepsilon-d(\boldsymbol{x}, B)$. Then $r>0$; thus there exists $\boldsymbol{z} \in B$ such that

$$
d(\boldsymbol{x}, B) \leqslant d(\boldsymbol{x}, \boldsymbol{z})<d(\boldsymbol{x}, B)+\frac{r}{2}=\varepsilon .
$$

Therefore, if $\boldsymbol{y} \in B\left(\boldsymbol{x}, \frac{r}{2}\right)$, then

$$
d(\boldsymbol{y}, \boldsymbol{z}) \leqslant d(\boldsymbol{y}, \boldsymbol{x})+d(\boldsymbol{x}, \boldsymbol{z})<\frac{r}{2}+d(\boldsymbol{x}, B)+\frac{r}{2}=d(\boldsymbol{x}, B)+r=\varepsilon
$$

which shows that $B\left(\boldsymbol{x}, \frac{r}{2}\right) \subseteq B_{\varepsilon}$. Therefore, B_{ε} is open.
Next, we note that

$$
d(\boldsymbol{x}, B)=0 \Leftrightarrow(\forall \varepsilon>0)(d(\boldsymbol{x}, B)<\varepsilon) \Leftrightarrow(\forall \varepsilon>0)\left(\boldsymbol{x} \in B_{\varepsilon}\right) \Leftrightarrow \boldsymbol{x} \in \bigcap_{\varepsilon>0} B_{\varepsilon}
$$

thus $d(\boldsymbol{x}, B)=0$ if and only if $\boldsymbol{x} \in \bigcap_{\varepsilon>0} B_{\varepsilon}$. By Proposition ??, we conclude that $\bigcap_{\varepsilon>0} B_{\varepsilon}=\bar{B}$.
(4) By the definition of infimum, for each $n \in \mathbb{N}$ there exists $\boldsymbol{a}_{n} \in A$ such that

$$
d(A, B) \leqslant d\left(\boldsymbol{a}_{n}, B\right)<d(A, B)+\frac{1}{n}
$$

Since A is compact, there exists a convergent subsequence $\left\{\boldsymbol{a}_{n_{j}}\right\}_{j=1}^{\infty}$ of $\left\{\boldsymbol{a}_{n}\right\}_{n=1}^{\infty}$ with limit $\boldsymbol{a} \in A$. By the Sandwich Lemma,

$$
d\left(\boldsymbol{a}_{n_{j}}, B\right) \rightarrow d(A, B) \text { as } j \rightarrow \infty .
$$

On the other hand, (2) implies that

$$
\left|d\left(\boldsymbol{a}_{n_{j}}, B\right)-d(\boldsymbol{a}, B)\right| \leqslant d\left(\boldsymbol{a}_{n_{j}}, \boldsymbol{a}\right) \rightarrow 0 \text { as } j \rightarrow \infty .
$$

Therefore,

$$
|d(\boldsymbol{a}, B)-d(A, B)| \leqslant\left|d(\boldsymbol{a}, B)-d\left(\boldsymbol{a}_{n_{j}}, B\right)\right|+\left|d\left(\boldsymbol{a}_{n_{j}}, B\right)-d(A, B)\right| \rightarrow 0 \text { as } j \rightarrow \infty
$$

which establishes the existence of $\boldsymbol{a} \in A$ such that $d(\boldsymbol{a}, B)=d(A, B)$ if A is compact.
(5) By (4), there exists $\boldsymbol{b} \in B$ such that $d(A, B)=d(\boldsymbol{b}, A)$. Let $C=B[\boldsymbol{b}, d(A, B)+1] \cap A$. Then

$$
d(\boldsymbol{b}, A)=d(\boldsymbol{b}, C)
$$

since every point $\boldsymbol{x} \in A \backslash C$ satisfies that $d(\boldsymbol{b}, \boldsymbol{x})>d(A, B)+1$. On the other hand, the HeineBorel Theorem implies that C is compact; thus (4) implies that there exists $\boldsymbol{c} \in C$ such that $d(\boldsymbol{b}, C)=d(\boldsymbol{b}, \boldsymbol{c})=\|\boldsymbol{b}-\boldsymbol{c}\|$. The desired result then follows from the fact that C is a subset of A (so that $\boldsymbol{c} \in A$).
(6) Let $A=\left\{(x, y) \in \mathbb{R}^{2} \mid x y \geqslant 1, x>0\right\}$ and $B=\left\{(x, y) \in \mathbb{R}^{2} \mid x y \leqslant-1, x<0\right\}$. Then A and B are closed set since they contain their boundaries. However, since $\boldsymbol{a}=\left(\frac{1}{n}, n\right) \in A$ and $\boldsymbol{b}=\left(-\frac{1}{n}, n\right) \in B$ for all $n \in \mathbb{N}, d(A, B) \leqslant d(\boldsymbol{a}, \boldsymbol{b})=\frac{2}{n}$ for all $n \in \mathbb{N}$ which shows that $d(A, B)=0$. However, the fact that $A \cap B=\varnothing$ implies that $d(\boldsymbol{a}, \boldsymbol{b})>0$ for all $\boldsymbol{a} \in A$ and $\boldsymbol{b} \in B$. Therefore, in this case there are no $\boldsymbol{a} \in A$ and $\boldsymbol{b} \in B$ such that $d(A, B)=d(\boldsymbol{a}, \boldsymbol{b})$.

