
Exercise Problem Sets 8
Nov. 04. 2022

Definition 0.1. Let (M,d) be a normed vector space, and A be a subset of M .

1. A point x P M is called an accumulation point of A if there exists a sequence txnu8
n=1 in

Aztxu such that txnu8
n=1 converges to x.

2. A point x P A is called an isolated point (孤立點) (of A) if there exists no sequence in Aztxu

that converges to x.

3. The derived set of A is the collection of all accumulation points of A, and is denoted by A1.

Problem 1. Let (M,d) be a metric space, and A be a subset of M . Show that A Ě A 1 if and only
if A is closed.

Proof. “ð” Note that 2 of Problem 5 of Exercise 7 implies that sA Ě A 1; thus if A is closed,
A = sA Ě A 1.

“ñ” In 2 of Problem 5 of Exercise 7, we establish that sA = A Y A 1. Therefore, if A Ě A 1, we have
sA = A Y A 1 = A which shows that A is closed. ˝

Problem 2. Show that the derived set of a set (in a metric space) is closed.

Proof. Let (M,d) be a metric space, and A be a subset of M . The goal is to show that A1 is closed
(and this is equivalent of showing that (A1)A is open). Let y R A1. Then there exists ε ą 0 such that

B(y, ε) X (Aztyu) = (B(y, ε)ztyu) X A = H .

Then A Ď
(
B(y, ε)ztyu

)A. Since(
B(y, ε)ztyu

)A
=

(
B(y, ε) X tyuA

)A
= B(y, ε)A Y tyu ,(

B(y, ε)ztyu
)A is closed. Therefore, Theorem 3.5 in the lecture note implies that

sA Ď
(
B(y, ε)ztyu

)A or equivalently, sA X B(y, ε)ztyu = H .

Since sA = A Y A1, the equality above implies that

A1 X B(y, ε)ztyu = H ;

thus the fact that y R A1 implies that B(y, ε) X A1 = H. ˝

Problem 3. Let A Ď Rn. Define the sequence of sets A(m) as follows: A(0) = A and A(m+1) =

the derived set of A(m) for m P N. Complete the following.

1. Prove that each A(m) for m P N is a closed set; thus A(1) Ě A(2) Ě ¨ ¨ ¨ .



2. Show that if there exists some m P N such that A(m) is a countable set, then A is countable.

3. For any given m P N, is there a set A such that A(m) ‰ H but A(m+1) = H?

4. Let A be uncountable. Then each A(m) is an uncountable set. Is it possible that
8
Ş

m=1

A(m) = H?

5. Let A =
!

1

m
+

1

k

ˇ

ˇ

ˇ
m ´ 1 ą k(k ´ 1),m, k P N

)

. Find A(1), A(2) and A(3).

Proof. 1. See Problem 2 for that A1 is closed for all A Ď M . Moreover, Problem 1 shows that A Ě A1

if A is closed (in fact, A is closed if and only if A Ě A1). Therefore, knowing that A(m) is closed
for all m P N, we obtain that A(m) Ě A(m+1) for all m P N.

2. Note that AzA1 consists of all isolated points of A. For m P N, define B(m´1) = A(m´1)zA(m).
Then B(m´1) consists of isolated points of A(m´1); thus B(m´1) is countable for all m P N. Since
for any subset A of M , we have

A Ď (AzA1) Y A1

and equality holds if A is closed, 1 implies that

A Ď (AzA(1)) Y A(1) = B(0) Y A(1) = B(0) Y
[(
A(1)zA(2)

)
Y A(2)

]
= B(0) Y B(1) Y A(2)

= ¨ ¨ ¨ = B(0) Y B(1) Y ¨ ¨ ¨ Y B(m´1) Y A(m) .

If A(m) is countable, we find that A is a subset of a finite union of countable sets; thus A is
countable.

4. By 2, if A(m) is countable for some m P N, then A is countable; thus if A is uncountable, A(m)

must be uncountable for all m P N.

5. For each k P N, let Bk =
!

1

m
+

1

k

ˇ

ˇ

ˇ
m ´ 1 ą k(k ´ 1),m, k P N

)

. Then A =
8
Ť

k=1

Bk. Moreover,

for each k P N,
supBk =

1

k(k ´ 1) + 2
+

1

k
and infBk =

1

k
;

thus supBk+1 ă infBk for each k P N. Therefore, Bk+1 is on the left of Bk for each k P N. We
also note that every element in A is an isolated point of A.

Suppose that txnu8
n=1 is a convergent sequence in A.

(a) Suppose that there exists k P N such that
␣

n P N
ˇ

ˇxn P Bk

(

= 8. Then lim
nÑ8

xn P ĎBk.

(b) Suppose that for all k P N we have
␣

n P N
ˇ

ˇxn P Bk

(

ă 8. Then there exists a subsequence
txnj

u8
j=1 of txnu8

n=1 satisfying that xnj+1
ă xnj

for all j P N. Such a subsequence must
converge to 0 since for each k P N only finitely many terms of xnj

belongs to the set
B1 YB2 Y ¨ ¨ ¨ YBk while the supremum of the rest of the subsequence is not greater than
infBk.



Therefore, by the fact that ĎBk = Bk Y
␣1

k

(

, we find that

sA = A Y

!1

k

ˇ

ˇ

ˇ
k P N

)

Y t0u .

Then the fact that every point in A is an isolated point of A implies that

A 1 = sAz collection of isolated point of A =
!1

k

ˇ

ˇ

ˇ
k P N

)

Y t0u .

Noting that every point of A 1 except t0u is an isolated point of A 1, we have A(2) = t0u so that
A(3) = H.

3. Following 5, we have a clear picture how to construct such a set. Let

Am =
!

1

i1
+

1

i2
+ ¨ ¨ ¨ +

1

im

ˇ

ˇ

ˇ
ij P N and ij+1 ´ 1 ą ij(ij ´ 1) for all 1 ď j ď m

)

.

Then A 1
m = Am´1 Y t0u, A

(2)
m = Am´2 Y t0u, ¨ ¨ ¨ , A

(k)
m = Am´k Y t0u if m ą k,

A
(m)
m = t0u and A

(m+1)
m = H. ˝

Problem 4. Recall that a cluster point x of a sequence txnu8
n=1 satisfies that

@ ε ą 0,#
␣

n P N
ˇ

ˇxn P B(x, ε)
(

= 8 .

Show that the collection of cluster points of a sequence (in a metric space) is closed.

Proof. Let (M,d) be a metric space, txku8
k=1 be a sequence in M , and A be the collection of cluster

points of txku8
k=1. We would like to show that A Ě sA.

Let y P AA. Then y is not a cluster point of txku8
k=1; thus

D ε ą 0 Q #
␣

n P N
ˇ

ˇxn P B(y, ε)
(

ă 8 .

For z P B(y, ε), let r = ε ´ d(y, z) ą 0. Then B(z, r) Ď B(y, ε) (see Figure 1 or check rigorously
using the triangle inequality). As a consequence, #

␣

n P N
ˇ

ˇxn P B(z, r)
(

ă 8 which implies that
z R A.

ε

yz

ε ´ d(y, z)

Figure 1: B(z, ε ´ d(y, z)) Ď B(y, ε) if z P B(y, ε)

Therefore, if z P B(y, ε) then z P AA; thus B(y, ε) X A = H. We then conclude that if y P AA then
y R sA. ˝



Problem 5. Let (V , } ¨ }) ba a normed vector space, and C be a non-empty convex set in V .

1. Show that sC is convex.

2. Show that if x P C̊ and y P sC, then (1´λ)x+λy P C̊ for all λ P (0, 1). This result is sometimes
called the line segment principle.

3. Show that C̊ is convex (you may need the conclusion in 2 to prove this).

4. Show that cl(C̊) = cl(C).

5. Show that int( sC) = int(C).

Hint: 2. Prove by contradiction.
3 and 4. Use the line segment principle.
5. Show that x P int( sC) can be written as (1 ´ λ)y + λz for some y P C̊ and z P B(x, ε) Ď sC.

Proof. 1. Let x,y P sC and 0 ď λ ď 1 be given. Then there exist sequences txku8
k=1 and tyku8

k=1

in C such that xk Ñ x and yk Ñ y as k Ñ 8. Since C is convex, (1 ´ λ)xk + λyk P C

for each k P N; thus by the fact that C Ď sC, (1 ´ λ)xk + λyk P sC for each k P N. Since
(1 ´ λ)xk + λyk Ñ (1 ´ λ)x + λy as k Ñ 8 and sC is closed, we must have (1 ´ λ)x + λy P sC;
thus sC is convex if C is convex.

2. Suppose the contrary that there exists λ P (0, 1) such that (1 ´ λ)x + λy R C̊. Then for each
k P N, there exists zk R C such that

›

›(1 ´ λ)x + λy ´ zk

›

› ă
1

k
@ k P N .

Since y P sC, there exists a sequence tyku8
k=1 P C satisfying

}yk ´ y} ă
1

λk
@ k P N .

Therefore, if k P N ,
›

›(1 ´ λ)x + λyk ´ zk

›

› ď
›

›(1 ´ λ)x + λy ´ zk

›

›+ }λ(y ´ yk)} ă
2

k
;

thus
›

›x ´
zk ´ λyk

1 ´ λ

›

› ă
2

k(1 ´ λ)
@ k P N .

Since x P C̊, there exists N ą 0 such that B
(
x, 2

(1 ´ λ)N

)
Ď C; thus zk ´ λyk

1 ´ λ
P C whenever

k ě N . By the convexity of C,

zk = (1 ´ λ)
zk ´ λyk

1 ´ λ
+ λyk P C ,

a contradiction.



3. Let x,y P C̊. By the line segment principle, (1 ´ λ)x + λy P C̊ for all λ P (0, 1) (since C̊ Ď sC

so that y P sC). This further implies that (1 ´ λ)x + λy P C̊ for all λ P [0, 1] since x,y P C̊;
thus C̊ is convex.

4. It suffices to show that cl(C̊) Ě cl(C). Let x P cl(C). Pick any y P C̊. By the line segment
principle,

xk ”
(
1 ´

1

k

)
x +

1

k
y P C̊ @ k ě 2 .

Since xk Ñ x as k Ñ 8, we find that x P cl(C̊).

5. It suffices to show that int( sC) Ď int(C). Let x P int( sC). Then there exists ε ą 0 such that
B(x, ε) Ď sC. Let y P int(C). If y = x, then x P int(C). If y ‰ x, define z = x + α(x ´ y),
where

α =
ε

2}x ´ y}
.

Then }x ´ z} =
ε

2
; thus z P B(x, ε) which further implies that z P sC. By the line segment

principle implies that (1 ´ λ)y + λz P C̊ for all λ P (0, 1). Taking λ =
1

1 + α
, we find that

(1 ´ λ)y + λz =
α

1 + α
y +

1

1 + α

(
x + α(x ´ y)

)
= x

which shows that x P int(C). ˝

Problem 6. Let (V , } ¨ }) be a normed vector space. Show that for all x P V and r ą 0,

int
(
B[x, r]

)
= B(x, r) .

Is the identity above true in general metric space?

Proof. Let y P V such that }x ´ y} = r. Then x + λ(y ´ x) P B[x, r]A for all |λ| ą 1. In particular,
yn ” x +

(
1 +

1

n

)
(y ´ x) P B[x, r]A for all n P N. Moreover,

}yn ´ y} =
1

n
}x ´ y} =

r

n
Ñ 0 as n Ñ 8 .

Therefore, lim
nÑ8

yn = y which implies that y P BB[x, r]
(
since y P B[x, r] and y is the limit of a

sequence from B[x, r]A
)
; thus

␣

y P V
ˇ

ˇ }x ´ y} = r
(

Ď BB[x, r] .

On the other hand, B(x, r) is open and B[x, r] = B(x, r)Y
␣

y P V
ˇ

ˇ }x ´ y} = r
(

. Therefore, B(x, r)

is the largest open set contained inside B[x, r]; thus B(x, r) = int(B[x, r]).
The identity is not true in general metric space. For example, consider the metric space (M,d0),

where d0 is the discrete metric on set M . For each x P M , B(x, 1) = txu but B[x, 1] = M . Since M

is open, int(M) = M ; thus int
(
B[x, 1]

)
‰ B(x, 1) as long as #M ą 1. ˝



Problem 7. Let Mnˆn denote the collection of all n ˆ n square real matrices, and (Mnˆn, } ¨ }p,q)

be a normed space with norm } ¨ }p,q given in Problem 6 of Exercise 5. Show that the set

GL(n) ”
␣

A P Mnˆn

ˇ

ˇ det(A) ‰ 0
(

is an open set in Mnˆn. The set GL(n) is called the general linear group.

Proof. Let A P GL(n) be given. Then A´1 P Mnˆn exists; thus

}A´1x}2 ď }A´1}2,2}x}2 @ x P Rn

which, using the fact that A : Rn 1´1
ÝÝÑ
onto

Rn, implies that

1

}A´1}2,2
}x}2 ď }Ax}2 @ x P Rn .

Let r =
1

}A´1}2,2
. For B P B(A, r), we have }A ´ B}2,2 ă r; thus for each x P Rn,

r}x}2 =
1

}A´1}2,2
}x}2 ď }Ax}Rn ď }(A ´ B)x}2 + }Bx}2 ď }A ´ B}2,2}x}Rn + }Bx}2

which further implies that

}Bx}2 ě
(
r ´ }A ´ B}2,2

)
}x}2 @ x P Rn .

Therefore, Bx = 0 if and only if x = 0 which shows that B is invertible; thus we established that

for each A P GL(n), there exists r =
1

}A´1}2,2
ą 0 such that B(A, r) Ď GL(n).

This shows that GL(n) is open. ˝

Problem 8. Show that every open set in R is the union of at most countable collection of disjoint
open intervals; that is, if U Ď R is open, then

U =
ď

kPI
(ak, bk) ,

where I is countable, and (ak, bk) X (aℓ, bℓ) = H if k ‰ ℓ.
Hint: For each point x P U , define Lx =

␣

y P R
ˇ

ˇ (y, x) Ď U
(

and Rx =
␣

y P R
ˇ

ˇ (x, y) Ď U
(

. Define
Ix = (infLx, supRx). Show that Ix = Iy if (x, y) P U and if (x, y) Ę U then Ix X Iy = H

Proof. As suggested in the hint, for each point x P U we define Lx =
␣

y P R
ˇ

ˇ (y, x) Ď U
(

and
Rx =

␣

y P R
ˇ

ˇ (x, y) Ď U
(

. We note that a ” infLx R U since if a P U , by the openness of U there
exists r ą 0 such that (a ´ r, a + r) Ď U which implies that (a ´ r, x) Ď U so that a ´ r P Lx, a
contradiction to the fact that a = infLx. Similarly, supRx R U . Therefore, Ix = (infLx, supLx) is
the maximal connected subset of U containing x.

If x, y P U and (x, y) Ď U , then (Lx, y) = (Lx, x) Y txu Y (x, y) Ď U which implies that Lx Ď Ly.
On the other hand, if z P Ly, then z ď x and (z, x) Ď U ; thus Ly Ď Lx which implies that Lx = Ly

if x, y P U and (x, y) Ď U . This shows that Ix = Iy if x, y P U and (x, y) Ď U . Moreover, if x, y P U

but (x, y) Ę U , then there exists x ă z ă y such that z R U ; thus supRx ď z ď infLy which implies
that Ix X Iy = H. Therefore, we establish that



1. if x, y P U and (x, y) Ď U , then Ix = Iy.

2. if x, y P U and (x, y) Ę U , then Ix X Iy = H.

This implies that U is the union of disjoint open intervals. Since every such open interval contains a
rational number, we can denote each such open interval as Ik, where k belongs to a countable index
set I. Write Ik = (ak, bk), then U =

Ť

kPI
(ak, bk). ˝

Problem 9. Let (M,d) be a metric space. A set A Ď M is said to be perfect if A = A1 (so that
there is no isolated points). The Cantor set is constructed by the following procedure: let E0 = [0, 1].
Remove the segment

(1
3
,
2

3

)
, and let E1 be the union of the intervals

[
0,

1

3

]
,
[2
3
, 1
]
.

Remove the middle thirds of these intervals, and let E2 be the union of the intervals[
0,

1

9

]
,
[2
9
,
3

9

]
,
[6
9
,
7

9

]
,
[8
9
, 1
]
.

Continuing in this way, we obtain a sequence of closed set Ek such that

(a) E1 Ě E2 Ě E2 Ě ¨ ¨ ¨ ;

(b) En is the union of 2n intervals, each of length 3´n.

The set C =
8
Ş

n=1

En is called the Cantor set.

1. Show that C is a perfect set.

2. Show that C is uncountable.

3. Find int(C).

Proof. 1. Let x P C. Then x P EN for some N P N. For each n P N, En is the union of disjoint closed
intervals with length 1

3n
, and BEn consists of the end-points of these disjoint closed intervals

whose union is En. Therefore, there exists xn P BEN+n´1ztxu such that |xn ´ x| ă
1

3N´1+n
.

Since BEn Ď C for each n P N, we find that txnu8
n=1 P Cztxu. Moreover, lim

nÑ8
xn = x; thus

x P C 1 which shows C Ď C 1. Since C is the intersection of closed sets, C is closed; thus

C Ď C 1 Ď sC = C

so we establish that C 1 = C.

2. For x P [0, 1], write x in ternary expansion (三進位展開); that is,

x = 0.d1d2d3 ¨ ¨ ¨ ¨ ¨ ¨ .



Here we note that repeated 2’s are chosen by preference over terminating decimals. For example,
we write 1

3
as 0.02222 ¨ ¨ ¨ instead of 0.1. Define

A =
␣

x = 0.d1d2d3 ¨ ¨ ¨
ˇ

ˇ dj P t0, 2u for all j P N
(

.

Note each point in BEn belongs to A; thus A Ď C. On the other hand, A has a one-to-one
correspondence with [0, 1]

(
x = 0.d1d2 ¨ ¨ ¨ P A ô y = 0.

d1
2

d2
2

¨ ¨ ¨ P [0, 1], where y is expressed
in binary expansion (二進位展開) with repeated 1’s instead of terminating decimals

)
. Since

[0, 1] is uncountable, A is uncountable; thus C is uncountable.

3. If int(C) is non-empty, then by the fact that int(C) is open in (R, | ¨ |), by Problem 7 the Cantor
set C contains at least one interval (x, y). Note that there exists N ą 0 such that |x´ y| ă

1

3n

for all n ě N . Since the length of each interval in En has length 1

3n
, we find that if n ě N , the

interval (x, y) is not contained in any interval of En. In other words, there must be z P (x, y)

such that z P EA
n which shows that

(x, y) Ę
8
Ş

n=1

En. Therefore, int(C) = H. ˝

Problem 10. Let V be a vector fields over F, where F = R or C, and te1, e2, ¨ ¨ ¨ , enu Ď V is a basis
for V ; that is, every x P V can be uniquely expressed as

x = x(1)e1 + x(2)e2 + ¨ ¨ ¨ + x(n)en =
n
ÿ

i=1

x(i)ei .

Define }x}2 =
( n
ř

i=1

ˇ

ˇx(i)
ˇ

ˇ

2
) 1

2 .

1. Show that } ¨ }2 is a norm on V .

2. Show that K is compact in (V , } ¨ }2) if and only if K is closed and bounded.

Proof. 1. By Cauchy-Schwarz inequality.

2. It suffices to show the “if” direction. Let txku8
k=1 be a sequence in K. Write xk =

n
ř

i=1

x
(i)
k ei.

Since txku8
k=1 is bounded, there exists M ą 0 such that

}xk}2 ď M @ k P N .

Therefore,
ˇ

ˇx
(i)
k

ˇ

ˇ ď M for all k P N and 1 ď i ď n; thus for each 1 ď i ď n,
␣

x
(i)
k

(8

k=1
is

a bounded sequence in F. By the Bolzano-Weierstrass Theorem (treat C as R2 to apply the
theorem), there exists a subsequence txkju

8
j=1 such that

␣

x
(i)
kj

(8

j=1
converges to some x(i) P F.

Let x =
(
x(1), x(2), ¨ ¨ ¨ , x(n)

)
. Then

›

›xkj ´ x
›

›

2
=

( n
ÿ

i=1

ˇ

ˇx
(i)
kj

´ x(i)
ˇ

ˇ

2
) 1

2
Ñ 0 as j Ñ 8 ;

thus the closedness of K implies that x P K. ˝



Problem 11. Let (M,d) be a metric space.

1. Show that a closed subset of a compact set is compact.

2. Show that the union of a finite number of sequentially compact subsets of M is compact.

3. Show that the intersection of an arbitrary collection of sequentially compact subsets of M is
sequentially compact.

Proof. 1. Let K be a compact set in M , F be a closed subset of K, and txku8
k=1 be a sequence

in F . Then txku8
k=1 is a sequence in K; thus the sequential compactness of K implies that

there exists a convergent subsequence txkju
8
j=1 with limit x P K. Note that txkju

8
j=1 itself is a

convergent sequence in F ; thus the limit x of txkju
8
j=1 belongs to F by the closedness of F .

2. Let K1, K2, ¨ ¨ ¨ , KN be compact sets, and K =
N
Ť

ℓ=1

Kℓ, and txnu8
n=1 be a sequence in K. Then

there exists 1 ď ℓ0 ď N such that

#
␣

n P N
ˇ

ˇxn P Kℓ0

(

= 8 .

Let txnk
u8
k=1 Ď Kℓ0 . By the compactness of Kℓ0 , there exists a convergent subsequence

␣

xnkj

(8

j=1
of txnk

u8
k=1 with limit x P Kℓ0 Ď K. Since

␣

xnkj

(8

j=1
is a subsequence of txnu8

n=1, we
conclude that every sequence in K has a convergent subsequence with limit in K; thus K is
compact.

3. Since every compact set is closed, the intersection of an arbitrary collection of compact sets of
M is closed. By 1, this intersection is also compact since the intersection is a closed set of any
compact set (in the family). ˝

Problem 12. Given taku8
k=1 Ď R a bounded sequence, define

A =
␣

x P R
ˇ

ˇ there exists a subsequence
␣

akj
(8

j=1
such that lim

jÑ8
akj = x

(

.

Show that A is a non-empty sequentially compact set in R. Furthermore, lim sup
kÑ8

ak = supA and
lim inf
kÑ8

ak = infA.

Proof. Note that A is the collection of cluster points of bounded sequence taku8
k=1; thus Problem 3 of

Exercise 7 shows that A is closed. Moreover, A is bounded since taku8
k=1 is bounded; thus supA P A

and infA P A. The desired result then follows from the fact that lim sup
kÑ8

ak is the largest cluster
point of taku8

k=1 and lim inf
kÑ8

ak is the least cluster point of taku8
k=1; thus lim sup

kÑ8

ak = supA P A and
lim inf
kÑ8

ak = infA P A. ˝

Problem 13. Let d : R2 ˆ R2 Ñ R be defined by

d(x, y) =

#

|x1 ´ y1| if x2 = y2 ,

|x1 ´ y1| + |x2 ´ y2| + 1 if x2 ‰ y2 .
where x = (x1, x2) and y = (y1, y2).

Problem 12 of Exercise 5 shows that d is a metric on R2. Consider the metric space (R2, d).



1. Find B(x, r) with r ă 1, r = 1 and r ą 1.

2. Show that the set tcu ˆ [a, b] Ď (R2, d) is closed and bounded.

3. Examine whether the set tcu ˆ [a, b] Ď (R2, d) is sequentially compact or not.

Problem 14. Let ℓ2 be the collection of all sequences txku8
k=1 Ď R such that

8
ř

k=1

|xk|2 ă 8. In other
words,

ℓ2 =
␣

txku8
k=1

ˇ

ˇxk P R for all k P N,
8
ÿ

k=1

|xk|2 ă 8
(

.

Define } ¨ }2 : ℓ
2 Ñ R by

›

›txku8
k=1

›

›

2
=

( 8
ÿ

k=1

|xk|2
) 1

2
.

1. Show that } ¨ }2 is a norm on ℓ2. The normed space (ℓ2, } ¨ }) usually is denoted by ℓ2.

2. Show that } ¨ }2 is induced by an inner product.

3. Show that (ℓ2, } ¨ }2) is complete.

4. Let A =
␣

x P ℓ2
ˇ

ˇ }x}2 ď 1
(

. Is A sequentially compact or not?

Proof. 1. Let txku8
k=1 and tyku8

k=1 be elements in ℓ2 and c P R. Clearly
›

›txku8
k=1

›

› ě 0 and
›

›txku8
k=1

›

› =

0 if and only if xk = 0 for all k P N. Moreover,

›

›ctxku8
k=1

›

›

2
=
›

›tcxku8
k=1

›

›

2
=

( 8
ÿ

k=1

|cxk|2
) 1

2
= |c|

( 8
ÿ

k=1

|xk|2
) 1

2
= |c|

›

›txku8
k=1

›

›

2
.

Finally, since the 2-norm for Rn is a norm, we must have( n
ÿ

k=1

|xk + yk|2
) 1

2
ď

( n
ÿ

k=1

|yk|2
) 1

2
+
( n
ÿ

k=1

|yk|2
) 1

2

Passing to the limit as n Ñ 8, we find that

›

›txku8
k=1 + tyku8

k=1

›

› =
›

›txk + yku8
k=1

›

›

2
= lim

nÑ8

( n
ÿ

k=1

|xk + yk|2
) 1

2

ď lim
nÑ8

[( n
ÿ

k=1

|yk|2
) 1

2
+
( n
ÿ

k=1

|yk|2
) 1

2
]
=
›

›txku8
k=1}2 +

›

›tyku8
k=1}2 .

Therefore, the triangle inequality for } ¨ }2 holds.

2. The norm } ¨ }2 is indeed the norm induced by the inner product

@

txku8
k=1, tyku8

k=1

D

=
8
ÿ

k=1

xkyk txku8
k=1, tyku8

k=1 P ℓ2 .



3. Let txku8
k=1 be a Cauchy sequence. Write xk =

␣

x
(k)
ℓ

(8

ℓ=1
. Then for each ℓ P N the sequence

tx
(k)
ℓ u8

k=1 is a Cauchy sequence in R. In fact, for a given ε ą 0, there exists N ą 0 such that

}xm ´ xn}2 ă ε whenever m,n ě N

which implies that for each ℓ P N,
ˇ

ˇx
(m)
ℓ ´ x

(n)
ℓ

ˇ

ˇ ď }xm ´ xn}2 ă ε whenever m,n ě N .

By the completeness of R, lim
kÑ8

x
(k)
ℓ = xℓ exists for each ℓ P N. Define x = txℓu

8
ℓ=1.

Claim: x P ℓ2.

Proof of claim: By Proposition 2.58 in the lecture note, every Cauchy sequence is bounded;
thus there exists M ą 0 such that }xk}2 ď M for all k P N. This implies that

n
ÿ

ℓ=1

ˇ

ˇx
(k)
ℓ

ˇ

ˇ

2
ď M2 @ k, n P N ;

thus
n
ÿ

ℓ=1

|xℓ|
2 =

n
ÿ

ℓ=1

lim
kÑ8

ˇ

ˇx
(k)
ℓ

ˇ

ˇ

2
= lim

kÑ8

n
ÿ

ℓ=1

ˇ

ˇx
(k)
ℓ

ˇ

ˇ

2
ď M2 @n P N .

Therefore, }x}2 =
8
ř

ℓ=1

|xℓ|
2 ď M2 which implies that x P ℓ2. ˝

Next we show that txku8
k=1 converges to x (in ℓ2). Let ε ą 0 be given. Since txku8

k=1 is a
Cauchy sequence, there exists N ą 0 such that

}xm ´ xn}2 ă
ε

2
whenever n,m ě N .

Then similar to the proof of claim, for each r P N and n ě N we have
r
ÿ

ℓ=1

|x
(n)
ℓ ´ xℓ|

2 =
r
ÿ

ℓ=1

lim
mÑ8

|x
(n)
ℓ ´ x

(m)
ℓ |2 = lim

mÑ8

r
ÿ

ℓ=1

|x
(n)
ℓ ´ x

(m)
ℓ |2 ď lim

mÑ8
}xn ´ xm}22 ď

ε2

4
;

thus if n ě N ,

}xn ´ x}22 =
8
ÿ

ℓ=1

|x
(n)
ℓ ´ xℓ|

2 ď
ε2

4
ă ε .

Therefore, txnu8
n=1 converges to x so that we established that every Cauchy sequence in (ℓ2, }¨}2)

converges to a point in ℓ2. This shows that (ℓ2, } ¨ }2) is complete.

4. Consider the sequence txku8
k=1 in ℓ2 given by that xk =

␣

x
(k)
ℓ

(8

ℓ=1
with x

(k)
ℓ = δkℓ, where δkℓ

is the Kronecker delta. Then }xk}2 = 1 for all k P N. On the other hand, if a subsequence of
txku8

k=1 converges, it must converge to the zero sequence (since x
(k)
ℓ = 0 for all ℓ except ℓ = k)

so that lim
jÑ8

›

›xk

›

›

2
= 0, a contradiction. ˝



Problem 15. Let A,B be two non-empty subsets in Rn. Define

d(A,B) = inf
␣

}x ´ y}2
ˇ

ˇx P A, y P B
(

to be the distance between A and B. When A = txu is a point, we write d(A,B) as d(x,B) (which
is consistent with the one given in Proposition 3.6 of the lecture note).

(1) Prove that d(A,B) = inf
␣

d(x,B)
ˇ

ˇx P A
(

.

(2) Show that
ˇ

ˇd(x1, B) ´ d(x2, B)
ˇ

ˇ ď }x1 ´ x2}2 for all x1, x2 P Rn.

(3) Define Bε =
␣

x P Rn
ˇ

ˇ d(x,B) ă ε
(

be the collection of all points whose distance from B is less
than ε. Show that Bε is open and

Ş

εą0

Bε = cl(B).

(4) If A is sequentially compact, show that there exists x P A such that d(A,B) = d(x,B).

(5) If A is closed and B is sequentially compact, show that there exists x P A and y P B such that
d(A,B) = d(x, y).

(6) If A and B are both closed, does the conclusion of (5) hold?

Proof. The proof of (1)-(4) does not rely on the structure of (Rn, } ¨ }2), so in the proofs of (1)-(4)
we write d(x,y) instead of }x ´ y}.

(1) Define f : A ˆ B Ñ R by f(a, b) = d(a, b). By Problem ??,

inf
(a,b)PAˆB

f(a, b) = inf
a PA

(
inf
b PB

f(a, b)
)
= inf

b PB

(
inf
a PA

f(a, b)
)
.

Since inf
b PB

f(a, b) = d(a, B), we conclude that

d(A,B) = inf
(a,b)PAˆB

f(a, b) = inf
a PA

d(a, B) .

(2) Let x,y P Rn and ε ą 0 be given. By the definition of infimum, there exists z P B such that

d(x, B) ď d(x, z) ă d(x, B) + ε .

By the definition of d(y, B) and the triangle inequality,

d(y, B) ď d(y, z) ď d(y,x) + d(x, z) ă d(x,y) + d(x, B) + ε ;

thus
d(y, B) ´ d(x, B) ă d(x,y) + ε .

A symmetric argument (switching x and y) also shows that d(x, B) ´ d(y, B) ă d(x,y) + ε.
Therefore,

ˇ

ˇd(x, B) ´ d(y, B)
ˇ

ˇ ă d(x,y) + ε .

Since ε ą 0 is given arbitrarily, we conclude that
ˇ

ˇd(x, B) ´ d(y, B)
ˇ

ˇ ď d(x,y) .



(3) Let x P Bε. Define r = ε ´ d(x, B). Then r ą 0; thus there exists z P B such that

d(x, B) ď d(x, z) ă d(x, B) +
r

2
= ε .

Therefore, if y P B
(
x, r

2

)
, then

d(y, z) ď d(y,x) + d(x, z) ă
r

2
+ d(x, B) +

r

2
= d(x, B) + r = ε

which shows that B
(
x, r

2

)
Ď Bε. Therefore, Bε is open.

Next, we note that

d(x, B) = 0 ô (@ ε ą 0)(d(x, B) ă ε) ô (@ ε ą 0)(x P Bε) ô x P
č

εą0

Bε ;

thus d(x, B) = 0 if and only if x P
Ş

εą0

Bε. By Proposition ??, we conclude that
Ş

εą0

Bε = sB.

(4) By the definition of infimum, for each n P N there exists an P A such that

d(A,B) ď d(an, B) ă d(A,B) +
1

n
.

Since A is compact, there exists a convergent subsequence tanj
u8
j=1 of tanu8

n=1 with limit a P A.
By the Sandwich Lemma,

d(anj
, B) Ñ d(A,B) as j Ñ 8 .

On the other hand, (2) implies that
ˇ

ˇd(anj
, B) ´ d(a, B)

ˇ

ˇ ď d(anj
,a) Ñ 0 as j Ñ 8 .

Therefore,
ˇ

ˇd(a, B) ´ d(A,B)
ˇ

ˇ ď
ˇ

ˇd(a, B) ´ d(anj
, B)

ˇ

ˇ+
ˇ

ˇd(anj
, B) ´ d(A,B)

ˇ

ˇ Ñ 0 as j Ñ 8

which establishes the existence of a P A such that d(a, B) = d(A,B) if A is compact.

(5) By (4), there exists b P B such that d(A,B) = d(b, A). Let C = B[b, d(A,B) + 1] X A. Then

d(b, A) = d(b, C)

since every point x P AzC satisfies that d(b,x) ą d(A,B) + 1. On the other hand, the Heine-
Borel Theorem implies that C is compact; thus (4) implies that there exists c P C such that
d(b, C) = d(b, c) = }b ´ c}. The desired result then follows from the fact that C is a subset of
A (so that c P A).

(6) Let A =
␣

(x, y) P R2
ˇ

ˇxy ě 1, x ą 0
(

and B =
␣

(x, y) P R2
ˇ

ˇxy ď ´1, x ă 0
(

. Then A

and B are closed set since they contain their boundaries. However, since a =
( 1
n
, n

)
P A and

b =
(

´
1

n
, n

)
P B for all n P N, d(A,B) ď d(a, b) =

2

n
for all n P N which shows that

d(A,B) = 0. However, the fact that A X B = H implies that d(a, b) ą 0 for all a P A and

b P B. Therefore, in this case there are no a P A and b P B such that d(A,B) = d(a, b). ˝


