Exercise Problem Sets 8

Definition 0.1. Let (M, d) be a normed vector space, and A be a subset of M.

- 1. A point $x \in M$ is called an *accumulation point* of A if there exists a sequence $\{x_n\}_{n=1}^{\infty}$ in $A \setminus \{x\}$ such that $\{x_n\}_{n=1}^{\infty}$ converges to x.
- 2. A point $x \in A$ is called an *isolated point* (孤立點) (of A) if there exists no sequence in $A \setminus \{x\}$ that converges to x.
- 3. The *derived set* of A is the collection of all accumulation points of A, and is denoted by A'.

Problem 1. Let (M, d) be a metric space, and A be a subset of M. Show that $A \supseteq A'$ if and only if A is closed.

- *Proof.* " \Leftarrow " Note that 2 of Problem 5 of Exercise 7 implies that $\overline{A} \supseteq A'$; thus if A is closed, $A = \overline{A} \supseteq A'$.
- "⇒" In 2 of Problem 5 of Exercise 7, we establish that $\overline{A} = A \cup A'$. Therefore, if $A \supseteq A'$, we have $\overline{A} = A \cup A' = A$ which shows that A is closed.

Problem 2. Show that the derived set of a set (in a metric space) is closed.

Proof. Let (M, d) be a metric space, and A be a subset of M. The goal is to show that A' is closed (and this is equivalent of showing that $(A')^{\complement}$ is open). Let $y \notin A'$. Then there exists $\varepsilon > 0$ such that

$$B(y,\varepsilon) \cap (A \setminus \{y\}) = (B(y,\varepsilon) \setminus \{y\}) \cap A = \emptyset.$$

Then $A \subseteq (B(y,\varepsilon) \setminus \{y\})^{\mathbb{C}}$. Since

$$\left(B(y,\varepsilon)\backslash\{y\}\right)^{\complement} = \left(B(y,\varepsilon)\cap\{y\}^{\complement}\right)^{\complement} = B(y,\varepsilon)^{\complement}\cup\{y\},$$

 $(B(y,\varepsilon)\backslash\{y\})^{\complement}$ is closed. Therefore, Theorem 3.5 in the lecture note implies that

$$\overline{A} \subseteq (B(y,\varepsilon) \setminus \{y\})^{L}$$
 or equivalently, $\overline{A} \cap B(y,\varepsilon) \setminus \{y\} = \emptyset$

Since $\overline{A} = A \cup A'$, the equality above implies that

$$A' \cap B(y,\varepsilon) \setminus \{y\} = \emptyset;$$

thus the fact that $y \notin A'$ implies that $B(y, \varepsilon) \cap A' = \emptyset$.

Problem 3. Let $A \subseteq \mathbb{R}^n$. Define the sequence of sets $A^{(m)}$ as follows: $A^{(0)} = A$ and $A^{(m+1)} =$ the derived set of $A^{(m)}$ for $m \in \mathbb{N}$. Complete the following.

1. Prove that each $A^{(m)}$ for $m \in \mathbb{N}$ is a closed set; thus $A^{(1)} \supseteq A^{(2)} \supseteq \cdots$.

- 2. Show that if there exists some $m \in \mathbb{N}$ such that $A^{(m)}$ is a countable set, then A is countable.
- 3. For any given $m \in \mathbb{N}$, is there a set A such that $A^{(m)} \neq \emptyset$ but $A^{(m+1)} = \emptyset$?
- 4. Let A be uncountable. Then each $A^{(m)}$ is an uncountable set. Is it possible that $\bigcap_{i=1}^{\infty} A^{(m)} = \emptyset$?
- 5. Let $A = \left\{ \frac{1}{m} + \frac{1}{k} \, \middle| \, m 1 > k(k-1), m, k \in \mathbb{N} \right\}$. Find $A^{(1)}, A^{(2)}$ and $A^{(3)}$.
- *Proof.* 1. See Problem 2 for that A' is closed for all $A \subseteq M$. Moreover, Problem 1 shows that $A \supseteq A'$ if A is closed (in fact, A is closed if and only if $A \supseteq A'$). Therefore, knowing that $A^{(m)}$ is closed for all $m \in \mathbb{N}$, we obtain that $A^{(m)} \supseteq A^{(m+1)}$ for all $m \in \mathbb{N}$.
 - 2. Note that $A \setminus A'$ consists of all isolated points of A. For $m \in \mathbb{N}$, define $B^{(m-1)} = A^{(m-1)} \setminus A^{(m)}$. Then $B^{(m-1)}$ consists of isolated points of $A^{(m-1)}$; thus $B^{(m-1)}$ is countable for all $m \in \mathbb{N}$. Since for any subset A of M, we have

$$A \subseteq (A \backslash A') \cup A'$$

and equality holds if A is closed, 1 implies that

$$A \subseteq (A \setminus A^{(1)}) \cup A^{(1)} = B^{(0)} \cup A^{(1)} = B^{(0)} \cup \left[\left(A^{(1)} \setminus A^{(2)} \right) \cup A^{(2)} \right] = B^{(0)} \cup B^{(1)} \cup A^{(2)}$$
$$= \dots = B^{(0)} \cup B^{(1)} \cup \dots \cup B^{(m-1)} \cup A^{(m)}.$$

If $A^{(m)}$ is countable, we find that A is a subset of a finite union of countable sets; thus A is countable.

- 4. By 2, if $A^{(m)}$ is countable for some $m \in \mathbb{N}$, then A is countable; thus if A is uncountable, $A^{(m)}$ must be uncountable for all $m \in \mathbb{N}$.
- 5. For each $k \in \mathbb{N}$, let $B_k = \left\{ \frac{1}{m} + \frac{1}{k} \middle| m-1 > k(k-1), m, k \in \mathbb{N} \right\}$. Then $A = \bigcup_{k=1}^{\infty} B_k$. Moreover, for each $k \in \mathbb{N}$,

$$\sup B_k = \frac{1}{k(k-1)+2} + \frac{1}{k}$$
 and $\inf B_k = \frac{1}{k};$

thus $\sup B_{k+1} < \inf B_k$ for each $k \in \mathbb{N}$. Therefore, B_{k+1} is on the left of B_k for each $k \in \mathbb{N}$. We also note that every element in A is an isolated point of A.

Suppose that $\{x_n\}_{n=1}^{\infty}$ is a convergent sequence in A.

- (a) Suppose that there exists $k \in \mathbb{N}$ such that $\{n \in \mathbb{N} \mid x_n \in B_k\} = \infty$. Then $\lim_{n \to \infty} x_n \in \overline{B_k}$.
- (b) Suppose that for all $k \in \mathbb{N}$ we have $\{n \in \mathbb{N} \mid x_n \in B_k\} < \infty$. Then there exists a subsequence $\{x_{n_j}\}_{j=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$ satisfying that $x_{n_{j+1}} < x_{n_j}$ for all $j \in \mathbb{N}$. Such a subsequence must converge to 0 since for each $k \in \mathbb{N}$ only finitely many terms of x_{n_j} belongs to the set $B_1 \cup B_2 \cup \cdots \cup B_k$ while the supremum of the rest of the subsequence is not greater than $\inf B_k$.

Therefore, by the fact that $\overline{B_k} = B_k \cup \{\frac{1}{k}\}$, we find that

$$\overline{A} = A \cup \left\{ \frac{1}{k} \, \middle| \, k \in \mathbb{N} \right\} \cup \{0\}.$$

Then the fact that every point in A is an isolated point of A implies that

$$A' = \overline{A} \setminus$$
collection of isolated point of $A = \left\{ \frac{1}{k} \mid k \in \mathbb{N} \right\} \cup \{0\}$

Noting that every point of A' except $\{0\}$ is an isolated point of A', we have $A^{(2)} = \{0\}$ so that $A^{(3)} = \emptyset$.

3. Following 5, we have a clear picture how to construct such a set. Let

$$A_m = \left\{ \frac{1}{i_1} + \frac{1}{i_2} + \dots + \frac{1}{i_m} \, \Big| \, i_j \in \mathbb{N} \text{ and } i_{j+1} - 1 > i_j(i_j - 1) \text{ for all } 1 \le j \le m \right\}.$$

Then $A'_m = A_{m-1} \cup \{0\}, \ A^{(2)}_m = A_{m-2} \cup \{0\}, \ \cdots, \ A^{(k)}_m = A_{m-k} \cup \{0\}$ if m > k, $A^{(m)}_m = \{0\}$ and $A^{(m+1)}_m = \emptyset$.

Problem 4. Recall that a cluster point x of a sequence $\{x_n\}_{n=1}^{\infty}$ satisfies that

$$\forall \varepsilon > 0, \# \{ n \in \mathbb{N} \mid x_n \in B(x, \varepsilon) \} = \infty.$$

Show that the collection of cluster points of a sequence (in a metric space) is closed.

Proof. Let (M, d) be a metric space, $\{x_k\}_{k=1}^{\infty}$ be a sequence in M, and A be the collection of cluster points of $\{x_k\}_{k=1}^{\infty}$. We would like to show that $A \supseteq \overline{A}$.

Let $y \in A^{\complement}$. Then y is not a cluster point of $\{x_k\}_{k=1}^{\infty}$; thus

$$\exists \varepsilon > 0 \ni \# \{ n \in \mathbb{N} \, | \, x_n \in B(y, \varepsilon) \} < \infty \, .$$

For $z \in B(y,\varepsilon)$, let $r = \varepsilon - d(y,z) > 0$. Then $B(z,r) \subseteq B(y,\varepsilon)$ (see Figure 1 or check rigorously using the triangle inequality). As a consequence, $\#\{n \in \mathbb{N} \mid x_n \in B(z,r)\} < \infty$ which implies that $z \notin A$.

Figure 1: $B(z, \varepsilon - d(y, z)) \subseteq B(y, \varepsilon)$ if $z \in B(y, \varepsilon)$

Therefore, if $z \in B(y, \varepsilon)$ then $z \in A^{\complement}$; thus $B(y, \varepsilon) \cap A = \emptyset$. We then conclude that if $y \in A^{\complement}$ then $y \notin \overline{A}$.

Problem 5. Let $(\mathcal{V}, \|\cdot\|)$ be a normed vector space, and C be a non-empty convex set in \mathcal{V} .

- 1. Show that \overline{C} is convex.
- 2. Show that if $\boldsymbol{x} \in \mathring{C}$ and $\boldsymbol{y} \in \overline{C}$, then $(1-\lambda)\boldsymbol{x}+\lambda\boldsymbol{y} \in \mathring{C}$ for all $\lambda \in (0,1)$. This result is sometimes called the *line segment principle*.
- 3. Show that \mathring{C} is convex (you may need the conclusion in 2 to prove this).
- 4. Show that $\operatorname{cl}(\mathring{C}) = \operatorname{cl}(C)$.
- 5. Show that $\operatorname{int}(\overline{C}) = \operatorname{int}(C)$.

Hint: 2. Prove by contradiction.

3 and 4. Use the line segment principle.

5. Show that
$$\boldsymbol{x} \in \operatorname{int}(\bar{C})$$
 can be written as $(1 - \lambda)\boldsymbol{y} + \lambda\boldsymbol{z}$ for some $\boldsymbol{y} \in \mathring{C}$ and $\boldsymbol{z} \in B(\boldsymbol{x}, \varepsilon) \subseteq \bar{C}$.

- Proof. 1. Let $\mathbf{x}, \mathbf{y} \in \overline{C}$ and $0 \leq \lambda \leq 1$ be given. Then there exist sequences $\{\mathbf{x}_k\}_{k=1}^{\infty}$ and $\{\mathbf{y}_k\}_{k=1}^{\infty}$ in C such that $\mathbf{x}_k \to \mathbf{x}$ and $\mathbf{y}_k \to \mathbf{y}$ as $k \to \infty$. Since C is convex, $(1 - \lambda)\mathbf{x}_k + \lambda \mathbf{y}_k \in C$ for each $k \in \mathbb{N}$; thus by the fact that $C \subseteq \overline{C}$, $(1 - \lambda)\mathbf{x}_k + \lambda \mathbf{y}_k \in \overline{C}$ for each $k \in \mathbb{N}$. Since $(1 - \lambda)\mathbf{x}_k + \lambda \mathbf{y}_k \to (1 - \lambda)\mathbf{x} + \lambda \mathbf{y}$ as $k \to \infty$ and \overline{C} is closed, we must have $(1 - \lambda)\mathbf{x} + \lambda \mathbf{y} \in \overline{C}$; thus \overline{C} is convex if C is convex.
 - 2. Suppose the contrary that there exists $\lambda \in (0, 1)$ such that $(1 \lambda)\mathbf{x} + \lambda \mathbf{y} \notin \mathring{C}$. Then for each $k \in \mathbb{N}$, there exists $\mathbf{z}_k \notin C$ such that

$$\|(1-\lambda)\boldsymbol{x}+\lambda\boldsymbol{y}-\boldsymbol{z}_k\|<rac{1}{k}\qquad \forall\,k\in\mathbb{N}\,.$$

Since $\boldsymbol{y} \in \overline{C}$, there exists a sequence $\{\boldsymbol{y}_k\}_{k=1}^{\infty} \in C$ satisfying

$$\|\boldsymbol{y}_k - \boldsymbol{y}\| < \frac{1}{\lambda k} \qquad \forall k \in N.$$

Therefore, if $k \in N$,

$$\left\|(1-\lambda)\boldsymbol{x}+\lambda\boldsymbol{y}_{k}-\boldsymbol{z}_{k}\right\| \leq \left\|(1-\lambda)\boldsymbol{x}+\lambda\boldsymbol{y}-\boldsymbol{z}_{k}\right\|+\left\|\lambda(\boldsymbol{y}-\boldsymbol{y}_{k})\right\| < \frac{2}{k};$$

thus

$$\|\boldsymbol{x} - \frac{\boldsymbol{z}_k - \lambda \boldsymbol{y}_k}{1 - \lambda}\| < \frac{2}{k(1 - \lambda)} \qquad \forall k \in \mathbb{N}$$

Since $\boldsymbol{x} \in \mathring{C}$, there exists N > 0 such that $B(\boldsymbol{x}, \frac{2}{(1-\lambda)N}) \subseteq C$; thus $\frac{\boldsymbol{z}_k - \lambda \boldsymbol{y}_k}{1-\lambda} \in C$ whenever $k \ge N$. By the convexity of C,

$$oldsymbol{z}_k = (1-\lambda) rac{oldsymbol{z}_k - \lambda oldsymbol{y}_k}{1-\lambda} + \lambda oldsymbol{y}_k \in C$$

a contradiction.

- 3. Let $\boldsymbol{x}, \boldsymbol{y} \in \mathring{C}$. By the line segment principle, $(1 \lambda)\boldsymbol{x} + \lambda\boldsymbol{y} \in \mathring{C}$ for all $\lambda \in (0, 1)$ (since $\mathring{C} \subseteq \overline{C}$ so that $\boldsymbol{y} \in \overline{C}$). This further implies that $(1 \lambda)\boldsymbol{x} + \lambda\boldsymbol{y} \in \mathring{C}$ for all $\lambda \in [0, 1]$ since $\boldsymbol{x}, \boldsymbol{y} \in \mathring{C}$; thus \mathring{C} is convex.
- 4. It suffices to show that $cl(\mathring{C}) \supseteq cl(C)$. Let $\boldsymbol{x} \in cl(C)$. Pick any $\boldsymbol{y} \in \mathring{C}$. By the line segment principle,

$$\boldsymbol{x}_{k} \equiv \left(1 - \frac{1}{k}\right)\boldsymbol{x} + \frac{1}{k}\boldsymbol{y} \in \mathring{C} \qquad \forall k \ge 2$$

Since $\boldsymbol{x}_k \to \boldsymbol{x}$ as $k \to \infty$, we find that $\boldsymbol{x} \in cl(\mathring{C})$.

5. It suffices to show that $\operatorname{int}(\overline{C}) \subseteq \operatorname{int}(C)$. Let $\boldsymbol{x} \in \operatorname{int}(\overline{C})$. Then there exists $\varepsilon > 0$ such that $B(\boldsymbol{x},\varepsilon) \subseteq \overline{C}$. Let $\boldsymbol{y} \in \operatorname{int}(C)$. If $\boldsymbol{y} = \boldsymbol{x}$, then $\boldsymbol{x} \in \operatorname{int}(C)$. If $\boldsymbol{y} \neq \boldsymbol{x}$, define $\boldsymbol{z} = \boldsymbol{x} + \alpha(\boldsymbol{x} - \boldsymbol{y})$, where

$$\alpha = \frac{\varepsilon}{2\|\boldsymbol{x} - \boldsymbol{y}\|}$$

Then $\|\boldsymbol{x} - \boldsymbol{z}\| = \frac{\varepsilon}{2}$; thus $\boldsymbol{z} \in B(\boldsymbol{x}, \varepsilon)$ which further implies that $\boldsymbol{z} \in \overline{C}$. By the line segment principle implies that $(1 - \lambda)\boldsymbol{y} + \lambda \boldsymbol{z} \in \mathring{C}$ for all $\lambda \in (0, 1)$. Taking $\lambda = \frac{1}{1 + \alpha}$, we find that

$$(1-\lambda)\boldsymbol{y} + \lambda \boldsymbol{z} = \frac{\alpha}{1+\alpha}\boldsymbol{y} + \frac{1}{1+\alpha} (\boldsymbol{x} + \alpha(\boldsymbol{x} - \boldsymbol{y})) = \boldsymbol{x}$$

which shows that $\boldsymbol{x} \in int(C)$.

Problem 6. Let $(\mathcal{V}, \|\cdot\|)$ be a normed vector space. Show that for all $\boldsymbol{x} \in \mathcal{V}$ and r > 0,

$$\operatorname{int}(B[\boldsymbol{x},r]) = B(\boldsymbol{x},r).$$

Is the identity above true in general metric space?

Proof. Let $\boldsymbol{y} \in \mathcal{V}$ such that $\|\boldsymbol{x} - \boldsymbol{y}\| = r$. Then $\boldsymbol{x} + \lambda(\boldsymbol{y} - \boldsymbol{x}) \in B[\boldsymbol{x}, r]^{\complement}$ for all $|\lambda| > 1$. In particular, $\boldsymbol{y}_n \equiv \boldsymbol{x} + (1 + \frac{1}{n})(\boldsymbol{y} - \boldsymbol{x}) \in B[\boldsymbol{x}, r]^{\complement}$ for all $n \in \mathbb{N}$. Moreover,

$$\|\boldsymbol{y}_n - \boldsymbol{y}\| = \frac{1}{n} \|\boldsymbol{x} - \boldsymbol{y}\| = \frac{r}{n} \to 0 \quad \text{as} \quad n \to \infty.$$

Therefore, $\lim_{n\to\infty} \boldsymbol{y}_n = \boldsymbol{y}$ which implies that $\boldsymbol{y} \in \partial B[\boldsymbol{x}, r]$ (since $\boldsymbol{y} \in B[\boldsymbol{x}, r]$ and \boldsymbol{y} is the limit of a sequence from $B[\boldsymbol{x}, r]^{\complement}$); thus

$$\left\{ \boldsymbol{y} \in \mathcal{V} \, \big| \, \| \boldsymbol{x} - \boldsymbol{y} \| = r \right\} \subseteq \partial B[\boldsymbol{x}, r].$$

On the other hand, $B(\boldsymbol{x}, r)$ is open and $B[\boldsymbol{x}, r] = B(\boldsymbol{x}, r) \cup \{\boldsymbol{y} \in \mathcal{V} \mid \|\boldsymbol{x} - \boldsymbol{y}\| = r\}$. Therefore, B(x, r) is the largest open set contained inside $B[\boldsymbol{x}, r]$; thus $B(\boldsymbol{x}, r) = \operatorname{int}(B[\boldsymbol{x}, r])$.

The identity is not true in general metric space. For example, consider the metric space (M, d_0) , where d_0 is the discrete metric on set M. For each $x \in M$, $B(x, 1) = \{x\}$ but B[x, 1] = M. Since M is open, $\operatorname{int}(M) = M$; thus $\operatorname{int}(B[x, 1]) \neq B(x, 1)$ as long as #M > 1.

Problem 7. Let $\mathcal{M}_{n \times n}$ denote the collection of all $n \times n$ square real matrices, and $(\mathcal{M}_{n \times n}, \|\cdot\|_{p,q})$ be a normed space with norm $\|\cdot\|_{p,q}$ given in Problem 6 of Exercise 5. Show that the set

$$\operatorname{GL}(n) \equiv \left\{ A \in \mathcal{M}_{n \times n} \, \middle| \, \det(A) \neq 0 \right\}$$

is an open set in $\mathcal{M}_{n \times n}$. The set $\mathrm{GL}(n)$ is called the general linear group.

Proof. Let $A \in GL(n)$ be given. Then $A^{-1} \in \mathcal{M}_{n \times n}$ exists; thus

$$\|A^{-1}\boldsymbol{x}\|_2 \leqslant \|A^{-1}\|_{2,2}\|\boldsymbol{x}\|_2 \qquad orall \, \boldsymbol{x} \in \mathbb{R}^n$$

which, using the fact that $A: \mathbb{R}^n \xrightarrow[onto]{1-1} \mathbb{R}^n$, implies that

$$rac{1}{\|A^{-1}\|_{2,2}}\|oldsymbol{x}\|_2\leqslant \|Aoldsymbol{x}\|_2\qquad orall\,oldsymbol{x}\in\mathbb{R}^n\,.$$

Let $r = \frac{1}{\|A^{-1}\|_{2,2}}$. For $B \in B(A, r)$, we have $\|A - B\|_{2,2} < r$; thus for each $\boldsymbol{x} \in \mathbb{R}^n$,

$$r\|\boldsymbol{x}\|_{2} = \frac{1}{\|A^{-1}\|_{2,2}} \|\boldsymbol{x}\|_{2} \leq \|A\boldsymbol{x}\|_{\mathbb{R}^{n}} \leq \|(A-B)\boldsymbol{x}\|_{2} + \|B\boldsymbol{x}\|_{2} \leq \|A-B\|_{2,2} \|\boldsymbol{x}\|_{\mathbb{R}^{n}} + \|B\boldsymbol{x}\|_{2}$$

which further implies that

$$\|B\boldsymbol{x}\|_2 \ge (r - \|A - B\|_{2,2})\|\boldsymbol{x}\|_2 \qquad \forall \, \boldsymbol{x} \in \mathbb{R}^n$$

Therefore, $B\mathbf{x} = \mathbf{0}$ if and only if $\mathbf{x} = \mathbf{0}$ which shows that B is invertible; thus we established that

for each
$$A \in \operatorname{GL}(n)$$
, there exists $r = \frac{1}{\|A^{-1}\|_{2,2}} > 0$ such that $B(A, r) \subseteq \operatorname{GL}(n)$.

This shows that GL(n) is open.

Problem 8. Show that every open set in \mathbb{R} is the union of at most countable collection of disjoint open intervals; that is, if $U \subseteq \mathbb{R}$ is open, then

$$U = \bigcup_{k \in \mathcal{I}} (a_k, b_k) \, ,$$

where \mathcal{I} is countable, and $(a_k, b_k) \cap (a_\ell, b_\ell) = \emptyset$ if $k \neq \ell$.

Hint: For each point $x \in U$, define $L_x = \{y \in \mathbb{R} \mid (y, x) \subseteq U\}$ and $R_x = \{y \in \mathbb{R} \mid (x, y) \subseteq U\}$. Define $I_x = (\inf L_x, \sup R_x)$. Show that $I_x = I_y$ if $(x, y) \in U$ and if $(x, y) \notin U$ then $I_x \cap I_y = \emptyset$

Proof. As suggested in the hint, for each point $x \in U$ we define $L_x = \{y \in \mathbb{R} \mid (y, x) \subseteq U\}$ and $R_x = \{y \in \mathbb{R} \mid (x, y) \subseteq U\}$. We note that $a \equiv \inf L_x \notin U$ since if $a \in U$, by the openness of U there exists r > 0 such that $(a - r, a + r) \subseteq U$ which implies that $(a - r, x) \subseteq U$ so that $a - r \in L_x$, a contradiction to the fact that $a = \inf L_x$. Similarly, $\sup R_x \notin U$. Therefore, $I_x = (\inf L_x, \sup L_x)$ is the maximal connected subset of U containing x.

If $x, y \in U$ and $(x, y) \subseteq U$, then $(L_x, y) = (L_x, x) \cup \{x\} \cup (x, y) \subseteq U$ which implies that $L_x \subseteq L_y$. On the other hand, if $z \in L_y$, then $z \leq x$ and $(z, x) \subseteq U$; thus $L_y \subseteq L_x$ which implies that $L_x = L_y$ if $x, y \in U$ and $(x, y) \subseteq U$. This shows that $I_x = I_y$ if $x, y \in U$ and $(x, y) \subseteq U$. Moreover, if $x, y \in U$ but $(x, y) \notin U$, then there exists x < z < y such that $z \notin U$; thus $\sup R_x \leq z \leq \inf L_y$ which implies that $I_x \cap I_y = \emptyset$. Therefore, we establish that

- 1. if $x, y \in U$ and $(x, y) \subseteq U$, then $I_x = I_y$.
- 2. if $x, y \in U$ and $(x, y) \notin U$, then $I_x \cap I_y = \emptyset$.

This implies that U is the union of disjoint open intervals. Since every such open interval contains a rational number, we can denote each such open interval as I_k , where k belongs to a countable index set \mathcal{I} . Write $I_k = (a_k, b_k)$, then $U = \bigcup_{k \in \mathcal{I}} (a_k, b_k)$.

Problem 9. Let (M, d) be a metric space. A set $A \subseteq M$ is said to be **perfect** if A = A' (so that there is no isolated points). The Cantor set is constructed by the following procedure: let $E_0 = [0, 1]$. Remove the segment $(\frac{1}{3}, \frac{2}{3})$, and let E_1 be the union of the intervals

$$\left[0,\frac{1}{3}\right], \left[\frac{2}{3},1\right].$$

Remove the middle thirds of these intervals, and let E_2 be the union of the intervals

$$\big[0,\frac{1}{9}\big],\big[\frac{2}{9},\frac{3}{9}\big],\big[\frac{6}{9},\frac{7}{9}\big],\big[\frac{8}{9},1\big]$$

Continuing in this way, we obtain a sequence of closed set E_k such that

- (a) $E_1 \supseteq E_2 \supseteq E_2 \supseteq \cdots;$
- (b) E_n is the union of 2^n intervals, each of length 3^{-n} .

The set $C = \bigcap_{n=1}^{\infty} E_n$ is called the **Cantor set**.

- 1. Show that C is a perfect set.
- 2. Show that C is uncountable.
- 3. Find int(C).
- Proof. 1. Let $x \in C$. Then $x \in E_N$ for some $N \in \mathbb{N}$. For each $n \in \mathbb{N}$, E_n is the union of disjoint closed intervals with length $\frac{1}{3^n}$, and ∂E_n consists of the end-points of these disjoint closed intervals whose union is E_n . Therefore, there exists $x_n \in \partial E_{N+n-1} \setminus \{x\}$ such that $|x_n - x| < \frac{1}{3^{N-1+n}}$. Since $\partial E_n \subseteq C$ for each $n \in \mathbb{N}$, we find that $\{x_n\}_{n=1}^{\infty} \in C \setminus \{x\}$. Moreover, $\lim_{n \to \infty} x_n = x$; thus $x \in C'$ which shows $C \subseteq C'$. Since C is the intersection of closed sets, C is closed; thus

$$C \subseteq C' \subseteq \bar{C} = C$$

so we establish that C' = C.

2. For $x \in [0, 1]$, write x in ternary expansion (三進位展開); that is,

$$x = 0.d_1d_2d_3\cdots\cdots$$

Here we note that repeated 2's are chosen by preference over terminating decimals. For example, we write $\frac{1}{3}$ as $0.02222\cdots$ instead of 0.1. Define

$$A = \{ x = 0.d_1 d_2 d_3 \cdots \mid d_j \in \{0, 2\} \text{ for all } j \in \mathbb{N} \}.$$

Note each point in ∂E_n belongs to A; thus $A \subseteq C$. On the other hand, A has a one-to-one correspondence with [0,1] $(x = 0.d_1d_2 \cdots \in A \Leftrightarrow y = 0.\frac{d_1}{2}\frac{d_2}{2} \cdots \in [0,1]$, where y is expressed in binary expansion (二進位展開) with repeated 1's instead of terminating decimals). Since [0,1] is uncountable, A is uncountable; thus C is uncountable.

3. If $\operatorname{int}(C)$ is non-empty, then by the fact that $\operatorname{int}(C)$ is open in $(R, |\cdot|)$, by Problem 7 the Cantor set C contains at least one interval (x, y). Note that there exists N > 0 such that $|x - y| < \frac{1}{3^n}$ for all $n \ge N$. Since the length of each interval in E_n has length $\frac{1}{3^n}$, we find that if $n \ge N$, the interval (x, y) is not contained in any interval of E_n . In other words, there must be $z \in (x, y)$ such that $z \in E_n^{\complement}$ which shows that

$$(x,y) \not\subseteq \bigcap_{n=1}^{\infty} E_n$$
. Therefore, $\operatorname{int}(C) = \emptyset$.

Problem 10. Let \mathcal{V} be a vector fields over \mathbb{F} , where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , and $\{\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n\} \subseteq \mathcal{V}$ is a basis for \mathcal{V} ; that is, every $\mathbf{x} \in \mathcal{V}$ can be uniquely expressed as

$$\boldsymbol{x} = x^{(1)}\mathbf{e}_1 + x^{(2)}\mathbf{e}_2 + \dots + x^{(n)}\mathbf{e}_n = \sum_{i=1}^n x^{(i)}\mathbf{e}_i$$

Define $\|\boldsymbol{x}\|_2 = \left(\sum_{i=1}^n |x^{(i)}|^2\right)^{\frac{1}{2}}$.

- 1. Show that $\|\cdot\|_2$ is a norm on \mathcal{V} .
- 2. Show that K is compact in $(\mathcal{V}, \|\cdot\|_2)$ if and only if K is closed and bounded.

Proof. 1. By Cauchy-Schwarz inequality.

2. It suffices to show the "if" direction. Let $\{\boldsymbol{x}_k\}_{k=1}^{\infty}$ be a sequence in K. Write $\boldsymbol{x}_k = \sum_{i=1}^n x_k^{(i)} \mathbf{e}_i$. Since $\{\boldsymbol{x}_k\}_{k=1}^{\infty}$ is bounded, there exists M > 0 such that

$$\|\boldsymbol{x}_k\|_2 \leqslant M \qquad \forall k \in \mathbb{N}$$

Therefore, $|x_k^{(i)}| \leq M$ for all $k \in \mathbb{N}$ and $1 \leq i \leq n$; thus for each $1 \leq i \leq n$, $\{x_k^{(i)}\}_{k=1}^{\infty}$ is a bounded sequence in \mathbb{F} . By the Bolzano-Weierstrass Theorem (treat \mathbb{C} as \mathbb{R}^2 to apply the theorem), there exists a subsequence $\{x_{k_j}\}_{j=1}^{\infty}$ such that $\{x_{k_j}^{(i)}\}_{j=1}^{\infty}$ converges to some $x^{(i)} \in \mathbb{F}$. Let $\boldsymbol{x} = (x^{(1)}, x^{(2)}, \cdots, x^{(n)})$. Then

$$\|\boldsymbol{x}_{k_j} - \boldsymbol{x}\|_2 = \left(\sum_{i=1}^n |x_{k_j}^{(i)} - x^{(i)}|^2\right)^{\frac{1}{2}} \to 0 \text{ as } j \to \infty;$$

thus the closedness of K implies that $\boldsymbol{x} \in K$.

Problem 11. Let (M, d) be a metric space.

- 1. Show that a closed subset of a compact set is compact.
- 2. Show that the union of a finite number of sequentially compact subsets of M is compact.
- 3. Show that the intersection of an arbitrary collection of sequentially compact subsets of M is sequentially compact.
- Proof. 1. Let K be a compact set in M, F be a closed subset of K, and $\{x_k\}_{k=1}^{\infty}$ be a sequence in F. Then $\{x_k\}_{k=1}^{\infty}$ is a sequence in K; thus the sequential compactness of K implies that there exists a convergent subsequence $\{x_{k_j}\}_{j=1}^{\infty}$ with limit $x \in K$. Note that $\{x_{k_j}\}_{j=1}^{\infty}$ itself is a convergent sequence in F; thus the limit x of $\{x_{k_j}\}_{j=1}^{\infty}$ belongs to F by the closedness of F.
 - 2. Let K_1, K_2, \dots, K_N be compact sets, and $K = \bigcup_{\ell=1}^N K_\ell$, and $\{x_n\}_{n=1}^\infty$ be a sequence in K. Then there exists $1 \leq \ell_0 \leq N$ such that

$$\#\{n \in \mathbb{N} \mid x_n \in K_{\ell_0}\} = \infty.$$

Let $\{x_{n_k}\}_{k=1}^{\infty} \subseteq K_{\ell_0}$. By the compactness of K_{ℓ_0} , there exists a convergent subsequence $\{x_{n_{k_j}}\}_{j=1}^{\infty}$ of $\{x_{n_k}\}_{k=1}^{\infty}$ with limit $x \in K_{\ell_0} \subseteq K$. Since $\{x_{n_{k_j}}\}_{j=1}^{\infty}$ is a subsequence of $\{x_n\}_{n=1}^{\infty}$, we conclude that every sequence in K has a convergent subsequence with limit in K; thus K is compact.

3. Since every compact set is closed, the intersection of an arbitrary collection of compact sets of M is closed. By 1, this intersection is also compact since the intersection is a closed set of any compact set (in the family).

Problem 12. Given $\{a_k\}_{k=1}^{\infty} \subseteq \mathbb{R}$ a bounded sequence, define

 $A = \left\{ x \in \mathbb{R} \, \big| \, \text{there exists a subsequence } \left\{ a_{k_j} \right\}_{j=1}^{\infty} \, \text{such that } \lim_{j \to \infty} a_{k_j} = x \right\}.$

Show that A is a non-empty sequentially compact set in \mathbb{R} . Furthermore, $\limsup_{k \to \infty} a_k = \sup_{k \to \infty} A$ and $\liminf_{k \to \infty} a_k = \inf_{k \to \infty} A$.

Proof. Note that A is the collection of cluster points of bounded sequence $\{a_k\}_{k=1}^{\infty}$; thus Problem 3 of Exercise 7 shows that A is closed. Moreover, A is bounded since $\{a_k\}_{k=1}^{\infty}$ is bounded; thus $\sup A \in A$ and $\inf A \in A$. The desired result then follows from the fact that $\limsup_{k \to \infty} a_k$ is the largest cluster point of $\{a_k\}_{k=1}^{\infty}$ and $\liminf_{k \to \infty} a_k$ is the least cluster point of $\{a_k\}_{k=1}^{\infty}$; thus $\limsup_{k \to \infty} a_k = \sup A \in A$ and $\liminf_{k \to \infty} a_k = \inf A \in A$.

Problem 13. Let $d : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$d(x,y) = \begin{cases} |x_1 - y_1| & \text{if } x_2 = y_2, \\ |x_1 - y_1| + |x_2 - y_2| + 1 & \text{if } x_2 \neq y_2. \end{cases} \text{ where } x = (x_1, x_2) \text{ and } y = (y_1, y_2).$$

Problem 12 of Exercise 5 shows that d is a metric on \mathbb{R}^2 . Consider the metric space (\mathbb{R}^2, d) .

- 1. Find B(x, r) with r < 1, r = 1 and r > 1.
- 2. Show that the set $\{c\} \times [a, b] \subseteq (\mathbb{R}^2, d)$ is closed and bounded.
- 3. Examine whether the set $\{c\} \times [a, b] \subseteq (\mathbb{R}^2, d)$ is sequentially compact or not.

Problem 14. Let ℓ^2 be the collection of all sequences $\{x_k\}_{k=1}^{\infty} \subseteq \mathbb{R}$ such that $\sum_{k=1}^{\infty} |x_k|^2 < \infty$. In other words,

$$\ell^{2} = \left\{ \{x_{k}\}_{k=1}^{\infty} \mid x_{k} \in \mathbb{R} \text{ for all } k \in \mathbb{N}, \sum_{k=1}^{\infty} |x_{k}|^{2} < \infty \right\}$$

Define $\|\cdot\|_2: \ell^2 \to \mathbb{R}$ by

$$\|\{x_k\}_{k=1}^{\infty}\|_2 = \left(\sum_{k=1}^{\infty} |x_k|^2\right)^{\frac{1}{2}}.$$

- 1. Show that $\|\cdot\|_2$ is a norm on ℓ^2 . The normed space $(\ell^2, \|\cdot\|)$ usually is denoted by ℓ^2 .
- 2. Show that $\|\cdot\|_2$ is induced by an inner product.
- 3. Show that $(\ell^2, \|\cdot\|_2)$ is complete.
- 4. Let $A = \{ \boldsymbol{x} \in \ell^2 \mid \| \boldsymbol{x} \|_2 \leq 1 \}$. Is A sequentially compact or not?
- *Proof.* 1. Let $\{x_k\}_{k=1}^{\infty}$ and $\{y_k\}_{k=1}^{\infty}$ be elements in ℓ^2 and $c \in \mathbb{R}$. Clearly $\|\{x_k\}_{k=1}^{\infty}\| \ge 0$ and $\|\{x_k\}_{k=1}^{\infty}\| = 0$ if and only if $x_k = 0$ for all $k \in \mathbb{N}$. Moreover,

$$\left\|c\{x_k\}_{k=1}^{\infty}\right\|_2 = \left\|\{cx_k\}_{k=1}^{\infty}\right\|_2 = \left(\sum_{k=1}^{\infty} |cx_k|^2\right)^{\frac{1}{2}} = |c|\left(\sum_{k=1}^{\infty} |x_k|^2\right)^{\frac{1}{2}} = |c|\left\|\{x_k\}_{k=1}^{\infty}\right\|_2$$

Finally, since the 2-norm for \mathbb{R}^n is a norm, we must have

$$\left(\sum_{k=1}^{n} |x_k + y_k|^2\right)^{\frac{1}{2}} \leq \left(\sum_{k=1}^{n} |y_k|^2\right)^{\frac{1}{2}} + \left(\sum_{k=1}^{n} |y_k|^2\right)^{\frac{1}{2}}$$

Passing to the limit as $n \to \infty$, we find that

$$\|\{x_k\}_{k=1}^{\infty} + \{y_k\}_{k=1}^{\infty}\| = \|\{x_k + y_k\}_{k=1}^{\infty}\|_2 = \lim_{n \to \infty} \left(\sum_{k=1}^n |x_k + y_k|^2\right)^{\frac{1}{2}}$$

$$\leq \lim_{n \to \infty} \left[\left(\sum_{k=1}^n |y_k|^2\right)^{\frac{1}{2}} + \left(\sum_{k=1}^n |y_k|^2\right)^{\frac{1}{2}} \right] = \|\{x_k\}_{k=1}^{\infty}\|_2 + \|\{y_k\}_{k=1}^{\infty}\|_2 + \|\{y_k\}_{k=1}^$$

Therefore, the triangle inequality for $\|\cdot\|_2$ holds.

2. The norm $\|\cdot\|_2$ is indeed the norm induced by the inner product

$$\left\langle \{x_k\}_{k=1}^{\infty}, \{y_k\}_{k=1}^{\infty} \right\rangle = \sum_{k=1}^{\infty} x_k y_k \qquad \{x_k\}_{k=1}^{\infty}, \{y_k\}_{k=1}^{\infty} \in \ell^2.$$

3. Let $\{\boldsymbol{x}_k\}_{k=1}^{\infty}$ be a Cauchy sequence. Write $\boldsymbol{x}_k = \{x_\ell^{(k)}\}_{\ell=1}^{\infty}$. Then for each $\ell \in \mathbb{N}$ the sequence $\{x_\ell^{(k)}\}_{k=1}^{\infty}$ is a Cauchy sequence in \mathbb{R} . In fact, for a given $\varepsilon > 0$, there exists N > 0 such that

$$\|\boldsymbol{x}_m - \boldsymbol{x}_n\|_2 < \varepsilon$$
 whenever $m, n \ge N$

which implies that for each $\ell \in \mathbb{N}$,

$$|x_{\ell}^{(m)} - x_{\ell}^{(n)}| \leq ||\boldsymbol{x}_m - \boldsymbol{x}_n||_2 < \varepsilon \quad \text{whenever} \quad m, n \geq N.$$

By the completeness of \mathbb{R} , $\lim_{k \to \infty} x_{\ell}^{(k)} = x_{\ell}$ exists for each $\ell \in \mathbb{N}$. Define $\boldsymbol{x} = \{x_{\ell}\}_{\ell=1}^{\infty}$. Claim: $\boldsymbol{x} \in \ell^2$.

Proof of claim: By Proposition 2.58 in the lecture note, every Cauchy sequence is bounded; thus there exists M > 0 such that $\|\boldsymbol{x}_k\|_2 \leq M$ for all $k \in \mathbb{N}$. This implies that

$$\sum_{\ell=1}^{n} \left| x_{\ell}^{(k)} \right|^2 \leqslant M^2 \qquad \forall \, k, n \in \mathbb{N} \,;$$

thus

$$\sum_{\ell=1}^{n} |x_{\ell}|^{2} = \sum_{\ell=1}^{n} \lim_{k \to \infty} |x_{\ell}^{(k)}|^{2} = \lim_{k \to \infty} \sum_{\ell=1}^{n} |x_{\ell}^{(k)}|^{2} \leq M^{2} \qquad \forall n \in \mathbb{N}$$

Therefore, $\|\boldsymbol{x}\|^2 = \sum_{\ell=1}^{\infty} |x_{\ell}|^2 \leq M^2$ which implies that $\boldsymbol{x} \in \ell^2$.

Next we show that $\{x_k\}_{k=1}^{\infty}$ converges to x (in ℓ^2). Let $\varepsilon > 0$ be given. Since $\{x_k\}_{k=1}^{\infty}$ is a Cauchy sequence, there exists N > 0 such that

$$\|\boldsymbol{x}_m - \boldsymbol{x}_n\|_2 < \frac{\varepsilon}{2}$$
 whenever $n, m \ge N$.

Then similar to the proof of claim, for each $r \in \mathbb{N}$ and $n \ge N$ we have

$$\sum_{\ell=1}^{r} |x_{\ell}^{(n)} - x_{\ell}|^{2} = \sum_{\ell=1}^{r} \lim_{m \to \infty} |x_{\ell}^{(n)} - x_{\ell}^{(m)}|^{2} = \lim_{m \to \infty} \sum_{\ell=1}^{r} |x_{\ell}^{(n)} - x_{\ell}^{(m)}|^{2} \leq \lim_{m \to \infty} \|\boldsymbol{x}_{n} - \boldsymbol{x}_{m}\|_{2}^{2} \leq \frac{\varepsilon^{2}}{4};$$

thus if $n \ge N$,

$$\|\boldsymbol{x}_n - \boldsymbol{x}\|_2^2 = \sum_{\ell=1}^{\infty} |x_\ell^{(n)} - x_\ell|^2 \leq \frac{\varepsilon^2}{4} < \varepsilon.$$

Therefore, $\{\boldsymbol{x}_n\}_{n=1}^{\infty}$ converges to \boldsymbol{x} so that we established that every Cauchy sequence in $(\ell^2, \|\cdot\|_2)$ converges to a point in ℓ^2 . This shows that $(\ell^2, \|\cdot\|_2)$ is complete.

4. Consider the sequence $\{\boldsymbol{x}_k\}_{k=1}^{\infty}$ in ℓ^2 given by that $\boldsymbol{x}_k = \{x_\ell^{(k)}\}_{\ell=1}^{\infty}$ with $x_\ell^{(k)} = \delta_{k\ell}$, where $\delta_{k\ell}$ is the Kronecker delta. Then $\|\boldsymbol{x}_k\|_2 = 1$ for all $k \in \mathbb{N}$. On the other hand, if a subsequence of $\{x_k\}_{k=1}^{\infty}$ converges, it must converge to the zero sequence (since $x_\ell^{(k)} = 0$ for all ℓ except $\ell = k$) so that $\lim_{i \to \infty} \|\boldsymbol{x}_k\|_2 = 0$, a contradiction.

Problem 15. Let A, B be two non-empty subsets in \mathbb{R}^n . Define

$$d(A,B) = \inf \{ \|x - y\|_2 \, | \, x \in A, y \in B \}$$

to be the distance between A and B. When $A = \{x\}$ is a point, we write d(A, B) as d(x, B) (which is consistent with the one given in Proposition 3.6 of the lecture note).

- (1) Prove that $d(A, B) = \inf \{ d(x, B) \mid x \in A \}.$
- (2) Show that $|d(x_1, B) d(x_2, B)| \leq ||x_1 x_2||_2$ for all $x_1, x_2 \in \mathbb{R}^n$.
- (3) Define $B_{\varepsilon} = \{x \in \mathbb{R}^n \mid d(x, B) < \varepsilon\}$ be the collection of all points whose distance from B is less than ε . Show that B_{ε} is open and $\bigcap_{\varepsilon > 0} B_{\varepsilon} = \operatorname{cl}(B)$.
- (4) If A is sequentially compact, show that there exists $x \in A$ such that d(A, B) = d(x, B).
- (5) If A is closed and B is sequentially compact, show that there exists $x \in A$ and $y \in B$ such that d(A, B) = d(x, y).
- (6) If A and B are both closed, does the conclusion of (5) hold?

Proof. The proof of (1)-(4) does not rely on the structure of $(\mathbb{R}^n, \|\cdot\|_2)$, so in the proofs of (1)-(4) we write $d(\boldsymbol{x}, \boldsymbol{y})$ instead of $\|\boldsymbol{x} - \boldsymbol{y}\|$.

(1) Define $f : A \times B \to \mathbb{R}$ by $f(\boldsymbol{a}, \boldsymbol{b}) = d(\boldsymbol{a}, \boldsymbol{b})$. By Problem ??,

$$\inf_{(\boldsymbol{a},\boldsymbol{b})\in A\times B} f(\boldsymbol{a},\boldsymbol{b}) = \inf_{\boldsymbol{a}\in A} \left(\inf_{\boldsymbol{b}\in B} f(\boldsymbol{a},\boldsymbol{b}) \right) = \inf_{\boldsymbol{b}\in B} \left(\inf_{\boldsymbol{a}\in A} f(\boldsymbol{a},\boldsymbol{b}) \right).$$

Since $\inf_{\boldsymbol{b}\in B} f(\boldsymbol{a}, \boldsymbol{b}) = d(\boldsymbol{a}, B)$, we conclude that

$$d(A, B) = \inf_{(\boldsymbol{a}, \boldsymbol{b}) \in A \times B} f(\boldsymbol{a}, \boldsymbol{b}) = \inf_{\boldsymbol{a} \in A} d(\boldsymbol{a}, B)$$

(2) Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$ and $\varepsilon > 0$ be given. By the definition of infimum, there exists $\boldsymbol{z} \in B$ such that

$$d(\boldsymbol{x}, B) \leq d(\boldsymbol{x}, \boldsymbol{z}) < d(\boldsymbol{x}, B) + \varepsilon$$
.

By the definition of $d(\boldsymbol{y}, B)$ and the triangle inequality,

$$d(\boldsymbol{y}, B) \leqslant d(\boldsymbol{y}, \boldsymbol{z}) \leqslant d(\boldsymbol{y}, \boldsymbol{x}) + d(\boldsymbol{x}, \boldsymbol{z}) < d(\boldsymbol{x}, \boldsymbol{y}) + d(\boldsymbol{x}, B) + \varepsilon;$$

thus

$$d(\boldsymbol{y}, B) - d(\boldsymbol{x}, B) < d(\boldsymbol{x}, \boldsymbol{y}) + \varepsilon$$

A symmetric argument (switching \boldsymbol{x} and \boldsymbol{y}) also shows that $d(\boldsymbol{x}, B) - d(\boldsymbol{y}, B) < d(\boldsymbol{x}, \boldsymbol{y}) + \varepsilon$. Therefore,

$$\left| d(\boldsymbol{x}, B) - d(\boldsymbol{y}, B) \right| < d(\boldsymbol{x}, \boldsymbol{y}) + \varepsilon$$
.

Since $\varepsilon > 0$ is given arbitrarily, we conclude that

$$|d(\boldsymbol{x}, B) - d(\boldsymbol{y}, B)| \leq d(\boldsymbol{x}, \boldsymbol{y}).$$

(3) Let $\boldsymbol{x} \in B_{\varepsilon}$. Define $r = \varepsilon - d(\boldsymbol{x}, B)$. Then r > 0; thus there exists $\boldsymbol{z} \in B$ such that

$$d(\boldsymbol{x}, B) \leq d(\boldsymbol{x}, \boldsymbol{z}) < d(\boldsymbol{x}, B) + \frac{r}{2} = \varepsilon$$

Therefore, if $\boldsymbol{y} \in B\left(\boldsymbol{x}, \frac{r}{2}\right)$, then

$$d(\boldsymbol{y}, \boldsymbol{z}) \leq d(\boldsymbol{y}, \boldsymbol{x}) + d(\boldsymbol{x}, \boldsymbol{z}) < \frac{r}{2} + d(\boldsymbol{x}, B) + \frac{r}{2} = d(\boldsymbol{x}, B) + r = \varepsilon$$

which shows that $B(\boldsymbol{x}, \frac{r}{2}) \subseteq B_{\varepsilon}$. Therefore, B_{ε} is open. Next, we note that

$$d(\boldsymbol{x}, B) = 0 \iff (\forall \varepsilon > 0)(d(\boldsymbol{x}, B) < \varepsilon) \iff (\forall \varepsilon > 0)(\boldsymbol{x} \in B_{\varepsilon}) \iff \boldsymbol{x} \in \bigcap_{\varepsilon > 0} B_{\varepsilon};$$

thus $d(\boldsymbol{x}, B) = 0$ if and only if $\boldsymbol{x} \in \bigcap_{\varepsilon > 0} B_{\varepsilon}$. By Proposition ??, we conclude that $\bigcap_{\varepsilon > 0} B_{\varepsilon} = \overline{B}$.

(4) By the definition of infimum, for each $n \in \mathbb{N}$ there exists $a_n \in A$ such that

$$d(A,B) \leq d(\boldsymbol{a}_n,B) < d(A,B) + \frac{1}{n}.$$

Since A is compact, there exists a convergent subsequence $\{a_{n_j}\}_{j=1}^{\infty}$ of $\{a_n\}_{n=1}^{\infty}$ with limit $a \in A$. By the Sandwich Lemma,

$$d(\boldsymbol{a}_{n_j}, B) \to d(A, B) \text{ as } j \to \infty.$$

On the other hand, (2) implies that

$$\left| d(\boldsymbol{a}_{n_j}, B) - d(\boldsymbol{a}, B) \right| \leq d(\boldsymbol{a}_{n_j}, \boldsymbol{a}) \to 0 \text{ as } j \to \infty.$$

Therefore,

$$\left| d(\boldsymbol{a}, B) - d(A, B) \right| \leq \left| d(\boldsymbol{a}, B) - d(\boldsymbol{a}_{n_j}, B) \right| + \left| d(\boldsymbol{a}_{n_j}, B) - d(A, B) \right| \to 0 \text{ as } j \to \infty$$

which establishes the existence of $a \in A$ such that d(a, B) = d(A, B) if A is compact.

(5) By (4), there exists $\boldsymbol{b} \in B$ such that $d(A, B) = d(\boldsymbol{b}, A)$. Let $C = B[\boldsymbol{b}, d(A, B) + 1] \cap A$. Then

$$d(\boldsymbol{b}, A) = d(\boldsymbol{b}, C)$$

since every point $\boldsymbol{x} \in A \setminus C$ satisfies that $d(\boldsymbol{b}, \boldsymbol{x}) > d(A, B) + 1$. On the other hand, the Heine-Borel Theorem implies that C is compact; thus (4) implies that there exists $\boldsymbol{c} \in C$ such that $d(\boldsymbol{b}, C) = d(\boldsymbol{b}, \boldsymbol{c}) = \|\boldsymbol{b} - \boldsymbol{c}\|$. The desired result then follows from the fact that C is a subset of A (so that $\boldsymbol{c} \in A$).

(6) Let
$$A = \{(x, y) \in \mathbb{R}^2 | xy \ge 1, x > 0\}$$
 and $B = \{(x, y) \in \mathbb{R}^2 | xy \le -1, x < 0\}$. Then A and B are closed set since they contain their boundaries. However, since $\mathbf{a} = (\frac{1}{n}, n) \in A$ and $\mathbf{b} = (-\frac{1}{n}, n) \in B$ for all $n \in \mathbb{N}$, $d(A, B) \le d(\mathbf{a}, \mathbf{b}) = \frac{2}{n}$ for all $n \in \mathbb{N}$ which shows that $d(A, B) = 0$. However, the fact that $A \cap B = \emptyset$ implies that $d(\mathbf{a}, \mathbf{b}) > 0$ for all $\mathbf{a} \in A$ and $\mathbf{b} \in B$. Therefore, in this case there are no $\mathbf{a} \in A$ and $\mathbf{b} \in B$ such that $d(A, B) = d(\mathbf{a}, \mathbf{b})$.