Exercise Problem Sets 4
Oct. 07. 2022

Problem 1. Let be R and b > 1.
1. Show the law of exponents holds (for rational exponents); that is, show that

(a) if r;s in Q, then 0" =" - b*.
(b) if r,s in Q, then b = (b")°.

2. For z € R, let B(z) = {¢' € R|t € Q,t < z}. Show that sup B(z) exists for all z € R, and
b =sup B(r) if r € Q.

3. Define * = sup B(x) for x € R. Show that B(z) > 0 for all x € R and the law of exponents

(for exponents in R)
(a) if x,y in R, then b**Y = b* - ¥ (b) if z,y > 0, then b*¥ = (b)Y,
are also valid.

4. Show that if x1, 29 € R and x1 < x4, then b™ < b*2. This implies that if x1, x5 are two numbers

in R satisfying 6"t = 6™, then x; = xs.

5. Let y > 0 be given. Show that if u,v € R such that b* < y and b’ > y, then b*t'/" < y and

b'=l/m > 4 for sufficiently large n.

6. Let y > 0 be given, and A € R be the set of all w such that " < y. Show that sup A exists
and x = sup A satisfies b = y. The number z (the uniqueness is guaranteed by 4) satisfying

b* =y is called the logarithm of y to the base b, and is denoted by log, y.
Hint: Make use of Problem 3 in Exercise 2.
Proof. We note that R satisfies Archimedean property and the least upper bound property.
1. Note that the exponential law holds if the exponents are integers; that is,
T =p" 0™ and " = (™)™ Vn,meZ.
For m,n € N, we “define” bm as the n-th power of bi; that is, bm = (b%)n Then for m,n e N,
[(5)]" = ()™ = v =

which implies that (b%)n is the m-th root of b™ if m,n € N. Moreover, (bﬁ)n = bm and
(bﬁ)m = b%; thus we establish that

3=

b= (b)) = ()= and  bmr = (bm) VYm,neN. (W)



3.

Suppose that r = N and s = @, where p1, 2, q1,q2 € N. Then (#) implies that
b1 D2

9192

() = (%)% = () B = [(7) %)% = (o) = 3

and
prs — 57”";;‘;”2 (bplpz)pzqum _ (bp1p2)p2q (bﬁ)plq2 — bries . brivs — b7 bF .
Therefore,
Vo =b"-b and V= ()" Vr,seQ and r,s>0. Q)

For r € Q and r < 0, we define b = (b=")~!. Then if 7,s € Q and r, s < 0, we have
br—i—s — (b (r+s) ) (b—T b~ ) (b—v")—l . (b—s)—l b
and
(br)s — [(b—r)—l}s )

First we show that z € R, B(x) is non-empty and bounded from above. By the Archimedean
Property, there exists n € N such that —z < n. Therefore, there exists a rational number —n

such that —n < x; thus b™" € B(x) which implies that B(x) is non-empty.

On the other hand, the Archimedean Property implies that there exists m € N such that z < m.
By the fact that

b' <b° whenever t<sandt seQ, ()

we conclude that b™ is an upper bound for B(x). Therefore, B(z) is bounded from above. By
the least upper bound property, we conclude that sup B(z) exists for all x € R.

Next we show that 0" = sup B(r) if r € Q. To see this, we note that b" € B(r) if r € Q. On the
other hand, () implies that 0" is an upper bound for B(r); thus sup B(r) = b".

We first show that
sup(cA) = c-sup A Ve>0, (%)

where cA = {c- x|z € A}. To see (), we observe that
reA=x<supA=c-z<c-supA (by the compatibility of - and <);
thus every element in cA is bounded from above by ¢ - sup A. Therefore,
sup(cA) < c-sup A.

On the other hand, let ¢ > 0 be given. Then there exists x € A and = > sup A — = Therefore,
C
c-x>c-supA—¢; thus

sup(cA) = c-x>c-supA—e.



Since € > 0 is given arbitrarily, we find that sup(cA) = ¢ - sup A4; thus (x) is concluded.
Next we show that

sup{bt|teQ,t<x}:inf{lf‘se(@s2:13}. (o)

Let S(z) = {b*|s € Q,s = x}. If b € B(z), then b’ is a lower bound for S(z). Therefore, B(z)

is a Subset of the collection of all lower bounds for S(z). By Problem 3 of Exercise 2,
sup B(z) < sup {y |y is a lower bound for S(z)} = infS(z).

Suppose that sup B(z) < infS(z). Since bn \, 1 as n — o0 (Problem 3 of Exercise 2), there
exists n € N such that infS(z) > bwsup B(z). By the fact that there exists r € Q and
I§T<l’+l, we find that

n

inf S(z) > b sup B(z) = sup {b’”“% |reQ,r< :1:} = sup {bs
> b mf{bs‘se(@s } inf S(x

1
se@,s<x+—}
n

a contradiction. Observe that
sup A~ = (ian)_l for every subset A of (0,0),

where A™! = {til ‘t € A} and (0,00) is the collection consisting of positive elements in R.

Therefore, (¢) implies that for z € R,

b =sup (M [t Qi < —a} =sup (b [t Qt > 2} = [mi B[t Qi > )|
:(ba:)—l

Now we show the law of exponential

b - bY = bty Ve,yeR. (%)

Let z,y € R be given. If t,se Qand t < x, s <y, thent+se Q and t + s < x + y; thus
b'b® =" < sup Bz +y) = b7

For any given rational ¢ < x, taking the supremum of the left-hand side over all rational s <y

and using (x) we find that

b_$:sup{bt‘te(@,t< —x} :sup{b_t‘te@,t>x} = [inf{bt}teQ,t>x}]_l
:(ba:)—l

Taking the supremum of the left-hand side over all rational ¢ < z, using (%) again we find that

b b =0 -sup {b' [t e Q,t <z} =sup {0V |teQ,t <z} <Y



thus we establish that
b b < b Ve,yeR. (00)

Now, note that (¢¢) implies that for all z,y € R,
BY = b > e ey = (p) L gy s ()L e Y =
The inequality above is indeed an equality and we obtain that
Wo=b"p"Y Vr,yeR.

This is indeed (**) because of that b= = (b*) L.

Next we show that (b")¥ = sup B(z - y) for all z > 0 and y € R. For z > 0, define A(z) = {s €
R‘s eQ,0<s< z} Note that if z > 0, then b* = sup A(z). Since for z > 0, we have b* > 1;
thus for z,y > 0,

(b%) = sup {(b")" ‘ teQ,0<t<y}= sup (b*)" = sup ( sup bs)t.
teA(y) teA(y) seA(x)

By Problem 5 of Exercise 2,

sup ( sup bs)t = sup  (b°)' = sup bt = BUPeAw <A@ B = pTY
teA(y) seA(x) (t,s)eA(y) x A(x) (t,s)eA(y)x A(z)

. Let 1 < x5 be given. Then AP implies that there exists r,s € Q such that 1 <r < s < xs.
Therefore, B(x1) € B(r) € B(s) € B(x2); thus

b®' = sup B(z1) < sup B(r) < sup B(s) < sup B(zg) = b™.
Since B(r) =b" and B(s) = b°, we must have B(r) < B(s); thus 4 is concluded.

. bY ,
. Since b% > 1 and m > 1, by the fact that bn —1asn — o0, there exist Ny, Ny > 0 such that

(Y

b
’b% — 1‘ < bﬁ — 1 whenever n > N; and |b% — 1’ < — —1 whenever n>= Ns.
b Yy

bU
Let N = max{Ny, No}. For n > N, we have b < b% and br < — or equivalently,
Y
b“+%<y and bv_%>y Vn>=N.

. Let A= {w eR } b < y} Since b > 1, 2 of Problem 3 in Exercise 2 implies that

" >1+n(b—1) whenever n > 2. (k)

By AP, there exists N > 2 such that 1 + N(b— 1) > y; thus A is bounded from above by N.

Moreover, there exists M > 2 such that

1
1+MOb—-1)> —;
Y



thus (*+*) implies that b= < y or —M € A. Therefore, A is non-empty. By LUBP, we
conclude that sup A exists.

Let © =sup A. Then x + % ¢ A; thus bt > y for all n € N. Since bn — 1san — o0, we find
that

b* = b° lim b = lim 6" % > y.
n—o0 n—ao0

On the other hand, 4 implies that x — ! € A; thus b < y for all n € o0 and we have
n
b* =% lim b~ n = lim b" v < y.
n—0 n—00

Therefore, b = y.

Problem 2. In this problem we prove the Intermediate Value Theorem:

Let f : [a,b] — R be continuous (at every point of [a, b]); that is,

lim f(z,) = f( lim z,) for all convergent sequence {z,}:2; < [a,b].
n—o0 n—ao0

If f(a)f(b) <0, then there exists ¢ € [a, b] such that f(c) = 0.

Complete the following.

1. W.L.O.G, we can assume that f(a) < 0. Define the set S = {z € [a,b]| f(x) > 0}. Show that
inf S exists.

2. Let ¢ = infS. Show that f(c) > 0.
3. Conclude that f(c) < 0 as well.
Hint:
1. Show that S is non-empty and bounded from below.
2. Show that there exists a sequence {c,}>°; in S such that ¢, — ¢ as n — .
3. Show that there exists a sequence {c,}°_; in [a, ¢) such that ¢, — c as n — .

Proof. 1. Since f(b) > 0, b € S. Moreover, a is a lower bound for S; thus S is non-empty and
bounded from below. By the completeness of R, inf.S € R exists.

2. Let ¢ = infS. For each n € N, there exists ¢, < c—i—% and ¢, € S. Then f(c,) > 0 for allne N
and

1
c<e, <c+ = VneN.
n

Then the Sandwich Lemma implies that ¢, — ¢ as n — 0. By the continuity of f,

f(e) = f(lim ¢,) = lim f(c,) = 0.

n—o0 n—o0



c—a

3. By 2, a # ¢. Consider the sequence {c,}*_; defined by ¢, = ¢ —

. Then {c,}?; < [a,c).
Moreover, by the fact that ¢ = infS and ¢, < ¢, ¢, ¢ S for all n € N. Therefore, f(c,) <0 for

all n € N. Since ¢, — ¢ as n — o0, by the continuity of f we find that
f(C):f(T}I_I){‘lOCn):JI_ILIOf(Cn)ﬁo. o

Problem 3. In this problem we prove the Extreme Value Theorem:

Let a,be R, a <band f : [a,b] - R be continuous (at every point of [a, b]); that is,

lim f(z,) = f(lim z,) for all convergent sequence {z,}; < [a,b].
n—o0 n—o0

Then there exist ¢, d € [a, b] such that f(c) = sup f(z) and f(d) = inf f(x).

ze[a,b] z€la,b)]

Complete the following.

1. Show that there exist sequences {c,}/°_; and {d,}r_; in [a, b] such that

lim f(c,) = sup f(x) and lim f(d,) = inf f(x).

n—w z€[a,b] n—0 z€[a,b]

2. Extract convergent subsequences {c,, };2, and {d,, };-, with limit ¢ and d, respectively. Show

that ¢, d € [a, b].
3. Show that f(c¢) = sup f(z) and f(d) = iflfb]f(x)'
z€(a,b] z€|a,
Proof. 1t suffices to show the case of sup f(z) since iFfb] f(z) = — sup (—f)(x) by Problem 2 of
x€[a,b] z€la, x€[a,b]

Exercise 3.

1. We first show that f([a, b]) is bounded. Suppose the contrary that f([a, b]) is not bounded. Then
for each n € N, there exists z,, € [a, b] such that |f(z,)| > n. Since {z,};2; S [a,b], {z,}2, is
bounded. By the fact that MSP = BWP, there exists a convergent subsequence {x,, }72; of
{z,};2,. By the continuity of f, {f (ﬂan)}Zozl is also convergent; thus Proposition 1.39 in the
lecture note implies that { f (:cnk)}koczl is bounded, a contradiction to that | f (:an)‘ > ny, = k for
all ke N.

Since f([a,b]) is bounded, M = sup f([a,b]) = sup f(z) exists. For each n € R, there exists

z€[a,b]

Cn € [a, b] such that
1
M—— < f(e,) <M.
n

By the Sandwich Lemma, lim f(¢,) = M = sup f(z).
n—o0

z€(a,b]
2. Since {c,}*; < [a,b], {c,}2; is bounded. By the fact that MISP = BWP, there exists a

convergent subsequence {cy, }7°; of {¢,}o_; with limit ¢. Since a < ¢,, <bfor all k e N, by a

Proposition that we talked about in class we conclude that a < ¢ < b.



3. Since ¢,, — c as k — o0, the continuity of f implies that

fle) = f(hm Cny) = hm f(cnk) = sup f(x).

z€[a,b]

Problem 4. Let {z,}’, and {y,}"; be sequences in R. Prove the following inequalities:

liminfz, + liminfy, <liminf(z, + y,) < hm mf x, + limsup y,
n—00 n—oo n—0o0 T 00

< limsup(z, + y,) < limsup z, + limsup y,, ;
n—o0 n—0o0 n—00

(ligglf\xn|)(li£r_1)i£f|yn\) < li1£r_1)i£f|xnyn| < (ligglf]xn|)(liirlqs;}p]yn|)

< limsup |2,y < (limsup |z,]) (limsup [y,|) .
n—0o0 n—0o0 n—aw

Give examples showing that the equalities are generally not true.

Proof. 1. Let k € N be fixed. Note that for n > k, we have

n>k n;k

Note that the LHS and the RHS are functions of k and is independent of n. Therefore,

inf [mf (Tn + Yn) — yn| < inf 2, < inf | sup(z, +yn) — yn]

n=k Ln=>k n=k n=k n>k

which further shows that

inf (z,, + yn) — supy, < inf z, < sup(x, + y,) — supy, .

nzk n=k nzk n=k nzk

Therefore,

inf (2, + yn) < mf Ty, + SUp Y, < sup(z, + yn) VkeN,

n=k n>=k n=k

and the first inequality follows from the fact that

inf z,, + inf y,, < inf(z, + y,) < 1nf Ty, + sup y, < sup(x, + y,) < sup z, + sup y,

n=>k n=k n=k n>k n>k n=>k n=k

for each k € N.
2. Let k € N be fixed. Note that for n > k, we have
inf 1219l + )] < ol (9] + ) < 50p [l (1] + )]
Note that the LHS and the RHS for functions of £ and is independent of n. Therefore,

inf [z (Jyn + )] sup [ (1] + )]

. n= n=k
inf < inf |z,| < inf
n=>k 1 n=k n=k

|yn|+'E

’yn|+'E



By the fact that

. 1 1

inf T~ !

ol sup (] + 0)
we find that

1
inf [l (Jyal + 7)] sup ||z lyn] + o]
- T < of o < nf '
sup (Iyal + ) sup (lynl + %)

thus

. 1 . 1 1
Inf [fel(lynl + 7)) < inf fa]sup (jgal + 7)< sup [l (lonl + 7)]
The second inequality follows from the fact that
. . 1 . 1 . 1
inf kol 10f (Jynl + ) < 1nf {lanl (ol + )] < fuf 7l sup (jynl + )
1 1
< sup [zl (lya] + )] < sup |z, sup (Iyal + )
for each k € N, and passing to the limit as k — oo.

. Let x,, =2+ sinn and y,, = 2 4+ cosn. Then z,,y, > 0, and

liminfz, = liminfy, =1, limsupz, =limsupy, =3.
n—o n—0a0 n—00 n—00

By Problem 3, the set { € [0,27] |z = k (mod 27) for some k € N} is dense in [0, 27]; thus for
< N such that z;, = k; (mod 27)
and {xkj };il converges to 6. This implies that for each 0 € [—1, 1], there exists a subsequence
{cos k;}32, such that

each 0 € [0,27] there exists an increasing sequence {k;}72, <

lim cosn; =cosf and lim sinn; =sinf.
j—o j—o

Therefore, we have

lim inf(z, + yn) =4 — /2, limsup(z, + y,) = 4 + V2,
n—00

n—0oo
and 0
liminfx,y, = 9 2\/5, limsup x,y, = = + 2V2.

n—00 2 n—0 2

Therefore,
liminfx, 4+ liminfy, < hm 1nf(wn +yn) < hm mf T, + limsupy,
n—o0 n—oo n—00
< limsup(z,, + y,) < limsup z,, + limsup y,
n—0oo n—aoo n—aoo

and

liminfz,, - hm mf Yn < hm mf(a:'nyn) < liminfx, - limsupy,
n—o0 n—oo n—00

< limsup(z,y,) < limsup z,, - limsupy, .
n—0oo n—aoo n—0oo

Therefore, the equalities are generally not true. =



Problem 5. Prove that

lim inf [2n hm mf A/ |zn| < limsup A/ |z,| < limsup 0] .
Ty,

n—0a0 ’ ‘ n—00 n—o0 | n|

Give examples to show that the equalities are not true in general. Is it true that lim {/|z,| exists
n—0o0

implies that lim [Zni] also exists?

n—00 |.%'n‘

Proof. W.L.O.G. we can assume that lim inf 1] > (0 and lim sup < . Let a = lim inf ]
n—w x| 00 |ajn\ n—w  |Ty|

|Zn11]

and b = lim sup , and € > 0 be given such that a — ¢ > 0. Then there exists N > 0 such that

n—00 |xn|

a—5<|a‘;n+‘1|<b+e Vn>=N.
Ty,
Therefore,
(@ —&)|lza| <[wnia| < (0+e)lzn] V=N

which implies that if n > N,

20| > (a — &)|Tn_i1]| > (@ — €)?|Tn_s| > > (@ — )" V|zy]
and

n| < (b+&)|zna| < (b+e)|ans| < - < (b+e)" V|zn].

The inequality above implies that

(a—¢)t \"/|xN R |zn] < (b+e) W\"/|$N|;

thus

lim inf [(a — 5)1_% R/ ]xN]] < liminf {/|z,| < limsup {/|z,| < limsup [ (b+ 6)1_% A/ |$N]] .
n—a0

n—0 n—0o0 n—00

By Problem 3 of Exercise 2, lim b =1 for all b > 0. Therefore,

n—0o0

tim inf (@ — )% 8/ ]| = lim (a = ) $/fon] = a — = = lming 221
e n—0 n—00 ‘-Tn’
and
lim sup [(b+5)1_% \/7@ = lim (b+5)1_% V]xy| =b+ e =limsup v |n+’1| + e
n—a0 n—aoo o0 l‘n

Since the inequality above holds for all € > 0, we conclude that

lim inf [Znt hm 1nf Y/ |zn] < limsup {/|z,| < lim sup Tn :
T

n—a0 |I | n—00 n—0oo | n|

Let {z,}_; be a real sequence defined by

{ 27" if nis odd,
Ty =

47" if n is even,



or r, = (3+ (—=1)")"". Then {/|z,| = 3+ (—1)" which shows that

. _ 1 . o 1
hgrig)lf |z, | = 1 and hg:s;;p |z,| = 5
To compute the limit superior and limit inferior of ‘T"JT ’, we define
Tn
e N G o G VA (3 (D”)‘”
S T B G e O e T A R T

and observe that lim ys, = 0 and lim ys,41 = 0. Since y, € [0,90), we conclude that 0 is the
n—aoo n—0oo

smallest cluster point of {y,}>_; and oo is the largest “cluster point” of {y,}>>_;. This shows that
x x
liminf| nil 0  and lim sup [Znsa] _ 0. o
n—00 ’a’,‘n| N—00 |‘/L‘TL’

Problem 6. Given the following sets consisting of elements of some sequence of real numbers. Find

the limsup and liminf of the sequence.
1. {Cosm‘m:O,l,Q,---}.
2. {®/Isinm|[|m=1,2,---}.
3. {(1+%)sm%‘m= 1,2,---}.
Hint: 1. First show that for all irrational «, the set
S ={ze[0,1]|z = ka (mod 1) for some k € N}
is dense in [0, 1]; that is, for all y € [0,1] and € > 0, there exists € S n (y — &,y + ). Then choose

1
a = — to conclude that
2

T = {z e[0,2n] |2 = k (mod 27) for some k € N}
is dense in [0, 27]. To prove that S is dense in [0, 1], you might want to consider the following set

Sy ={z€0,1]|z = la (mod 1) for some 1 < <k + 1}

L . : 1
Note that there must be two points in S whose distance is less than T What happened to (the
multiples of) the difference of these two points?
2. Use the fact that 7 is a Liouville number; that is, there exists d € N such that

1
‘w——?—d Vp,qeZ,q#0.

Proof. 1. Define Sy = {z € [0,1] |z = lo (mod 1) for some 1 < ¢ < k+1}. Let 1 < b4,0, < k+ 1,
and x,y € [0, 1] satisfying that = {1 (mod 1) and y = ¢y (mod 1). Then by the fact that
a¢Q,

r=y < lLa=/lamodl) < ({4—llaeZ < (1 —Il,=0.



Therefore, there are (k+1) distinct points in Sy, (this also shows that each k € N corresponds to
different point z = ka (mod 1) in §). Moreover, x ¢ Q if € Si. By the pigeonhole principle,

e 1
there exist z,y in S satisfying that 0 < |z — y| < o

. . 1 . .
Let € > 0 be given. Then there exists n € N such that o <e By the discussion above, there

exist x,y € S, such that 0 < |z — y| < e. Suppose that x = nya (mod 1) and y = noar (mod
1), and define m = |n; — ny|. The point z € [0, 1] satisfying z = ma (mod 1) has the property
that z € (0,e) U (1 —¢,1). Therefore,

(Ve>0)3zeS)(ze(0,e)u(l—¢1)).

Let y € [0,1] and € > 0 be given. The discussion above provides an x € (0, 1) such that z = ka
(mod 1) for some k € N and = € (0,e) U (1 —¢,1). Then some constant multiple of x must
belong to (y — e,y +¢). lf bx € (y — e,y + ¢), then z = kla (mod 1) in (y — &,y + ). This
shows that S is dense in [0, 1].

Having established that S is dense in [0, 1], we find that 7" is dense in [0,27]. Therefore, for
each ¢ € [0,27] there exists an increasing sequence {m;}72, < N such that z,,;, = m; (mod

2m) and {z;,;}52, < [0,27] converges to §. In particular, for each 6 € [0,2n] there exists an

increasing sequence {m;}*; < N such that

J=1
lim cosm; = cos and lim sinm; = sin0;
thus we conclude that limsup cosm = 1 and liminfcosm = —1.
m—00 m—00

. Since 7 is not a Liouville number, there exists d € N such that

1
)ﬂ'—z—) > — Vp,qgeZ,q#0. (0.1)
q q
For each m € N, let ¢, € N be such that
inf [gm — m| = |gnT —m|. (0.2)
qeN

Such ¢, exists since the infimum indeed occurs in a finite set of N. Using (@), we find that

1
Fé\qmﬂ—m\ VmeN.

On the other hand, because of (@) we must have

| — M| < Vm » 1 (in fact, m > 6 is enough)

m
2
since we cannot have | g, ™—m/| > g, |(gm+1)mT—m| > gand |(gm—1)T—m]| > gsimultaneously.

Therefore,
1
—— < |gmm —m| <

— Vm >» 1 (0.3)
4m

b |



: . . .2 .
which, together with the inequality —x < sinx for all x € [O, g], further shows that
T

2 1 1
——— <sin—— < [sinm| <1 Vm > 1. (0.4)
T Im

The inequality above shows that

2 \m
( ><mx/|sinml<1 ¥m o> 1.

d—1
T4,

1 1
Since (@) implies that m_ 3 < gm < —+ 3 for all m » 1, the fact that
™ Y

and the Sandwich Lemma show that
1
lim qp =

m—00

Passing to the limit as m — o0 in (@), we conclude that TrlLl_rgo R/|sinm| = 1. This shows that

liminf X/|sinm| = limsup X/|sinm|=1.
m—00

m—00

1 1
3. Let z,, = (1 + —) sin 2% Since lim (1 + —) = 1 > 0 and there are seven cluster points,
m 6 m

m—00
\/g 1 . MTywo
{ +1, i?’ -1_-5, 0}, of the sequence {sm ?}m:v we expect that
. 1, . mnm . 1, . mnm
lim sup (1 + —) sin — =1 and lim inf (1 + —) sin — = —1.
m— 00 m 6 m—00 m 6

To see that our expectation is in fact true, we let € > 0 be given and observe that

#{meN|xm>1+€}< [1}+1<oo

€
while the set {m € N|z,, > 1+ ¢} 2 {12k + 3|k € N} so that

#{meN|z, >1+c} =,

Therefore, Proposition 1.98 shows that 1 is the limit superior of {z,,}_,. Similarly, —1 is the

limit inferior of {z,,}%_,. o



