Problem 1. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field, and $a, b \in \mathbb{F}$. Show that $a \leq b$ if and only if for all $\varepsilon > 0, a < b + \varepsilon$.

Proof. " \Rightarrow " Let $\varepsilon > 0$ be given. By the compatibility of \leq and +,

$$a < a + \varepsilon \leqslant b + \varepsilon$$

which implies that $a < b + \varepsilon$.

" \Leftarrow " Suppose the contrary that a > b. Let $\varepsilon = a - b$. Then $\varepsilon > 0$; thus

$$a < b + (a - b) = a,$$

a contradiction.

Problem 2. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field, $x, y \in \mathbb{F}$, and $n \in \mathbb{N}$. Show that

- 1. If $0 \leq x < y$, then $x^n < y^n$.
- 2. If $0 \leq x, y$ and $x^n < y^n$, then x < y.

Proof. 1. Let $S = \{n \in \mathbb{N} \mid x^n < y^n\}$. Then $1 \in S$ by assumption. Suppose that $n \in S$. Then $0 \leq x^n < y^n$. By the fact that $0 \leq x < y$, we find that

$$x^{n+1} = x^n \cdot x < x^n \cdot y < y^n \cdot y = y^{n+1};$$

thus $n + 1 \in S$. By induction, we conclude that $S = \mathbb{N}$.

2. Suppose the contrary that $x \ge y$. Then 1 implies that $x^n \ge y^n$, a contradiction.

Problem 3. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field satisfying the Archimedean property, and $x, y \in \mathbb{F}$ satisfying x < y. Show that there exists $r \in \mathbb{Q}$ such that x < r < y. This property is called the *denseness* of \mathbb{Q} (in Archimedean ordered fields).

Proof. If x < 0 < y, then we can simply choose r = 0. It then suffices to establish the case for 0 < x < y (since if x < y < 0 we pick r satisfying -y < r < -x so that x < -r < y).

Since y - x > 0, by the Archimedean property there exists $n \in \mathbb{N}$ such that $\frac{1}{y - x} < n$. This implies that nx + 1 < ny for such n.

Let $S = \{m \in \mathbb{N} \mid nx < m\}$. By the Archimedean property, $S \neq \emptyset$; thus the well-ordering principle implies that $m = \min S$ exists. Such m satisfies

$$nx < m \leqslant nx + 1 < ny;$$

thus $x < \frac{m}{n} < y$. The number $r = \frac{m}{n}$ is one of the desired rational numbers.

Alternative proof. If x < 0 < y, then we can simply choose r = 0. It then suffices to establish the case for 0 < x < y (since if x < y < 0 we pick r satisfying -y < r < -x so that x < -r < y).

Suppose the contrary that there are 0 < x < y such that no rational number r satisfy x < r < y. Let $n \in \mathbb{N}$ be given. Define $S = \{k \in \mathbb{N} \mid nx < k\}$. The Archimedean property implies that $S \neq \emptyset$; thus $m = \min S$ exists. Since there is no rational number in between x and y, such m satisfies

$$\frac{m-1}{n} < x < y < \frac{m}{n};$$

thus $0 < y - x < \frac{1}{n}$. Therefore, we establish that $\frac{1}{y - x}$ is an upper bound for \mathbb{N} , a contradiction to the Archimedean property.