Exercise Problem Sets 6

Mar. 252022

Problem 1. Define B to be the set of all even functions in the space $\mathscr{C}([-1,1] ; \mathbb{R})$; that is, $f \in B$ if and only if f is continuous on $[-1,1]$ and $f(x)=f(-x)$ for all $x \in[-1,1]$. Prove that B is closed but not dense in $\mathscr{C}([-1,1] ; \mathbb{R})$. Hence show that even polynomials are dense in B, but not in $\mathscr{C}([-1,1] ; \mathbb{R})$.

Proof. Let $\left\{f_{k}\right\}_{k=1}^{\infty}$ be a sequence in B and $\left\{f_{k}\right\}_{k=1}^{\infty}$ converges uniformly to f on $[-1,1]$. Then f is continuous. Moreover, for each $x \in[-1,1]$,

$$
f(x)=\lim _{k \rightarrow \infty} f_{k}(x)=\lim _{k \rightarrow \infty} f_{k}(-x)=f(-x) ;
$$

thus f is even. Therefore, $f \in B$ which shows that B is closed. However, B is not dense in B since there exists no $f \in B$ satisfying that

$$
\max _{x \in[-1,1]}|f(x)-x|<\frac{1}{2}
$$

since

$$
\max _{x \in[-1,1]}|f(x)-x| \geqslant \max \{|f(1)-1|,|f(-1)+1|\}=\max \{|f(1)-1|,|f(1)+1|\} \geqslant 1 .
$$

Let \mathcal{A} denote the collection of even polynomials, and f be an even continuous function. Then the Weierstrass Theorem implies that there exists a sequence of polynomial $\left\{p_{n}\right\}_{n=1}^{\infty}$ such that

$$
\lim _{n \rightarrow \infty} \max _{x \in[0,1]}\left|f(\sqrt{x})-p_{n}(x)\right|=0 .
$$

For each $n \in \mathbb{N}$, define $q_{n}:[-1,1] \rightarrow \mathbb{R}$ by $q_{n}(x)=p_{n}\left(x^{2}\right)$. Then $\left\{q_{n}\right\}_{n=1}^{\infty} \subseteq \mathcal{A}$ and

$$
\lim _{n \rightarrow \infty} \max _{x \in[-1,1]}\left|f(x)-q_{n}(x)\right|=\lim _{n \rightarrow \infty} \max _{x \in[0,1]}\left|f(x)-p_{n}\left(x^{2}\right)\right|=\lim _{n \rightarrow \infty} \max _{x \in[0,1]}\left|f(\sqrt{x})-p_{n}(x)\right|=0
$$

which shows that $\left\{q_{n}\right\}_{n=1}^{\infty}$ converges uniformly to f on $[-1,1]$; thus \mathcal{A} is dense in B. On the other hand, since $\mathcal{A} \subseteq B$, we must have $\overline{\mathcal{A}} \subseteq \bar{B} \subsetneq \mathscr{C}([-1,1] ; \mathbb{R})$ which implies that \mathcal{A} is not dense in $\mathscr{C}([-1,1] ; \mathbb{R})$.

Problem 2. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function.

1. Suppose that

$$
\int_{0}^{1} f(x) x^{n} d x=0 \quad \forall n \in \mathbb{N} \cup\{0\}
$$

Show that $f=0$ on $[0,1]$.
2. Suppose that for some $m \in \mathbb{N}$,

$$
\int_{0}^{1} f(x) x^{n} d x=0 \quad \forall n \in\{0,1, \cdots, m\}
$$

Show that $f(x)=0$ has at least $(m+1)$ distinct real roots around which $f(x)$ change signs.

Proof. 1. By the Weierstrass Theorem, for each $k \in \mathbb{N}$ there exists a polynomial p_{k} such that $\left\|f-p_{k}\right\|_{\infty}<\frac{1}{k}$. Since $\int_{0}^{1} f(x) x^{n} d x=0$ for all $n \in \mathbb{N} \cup\{0\}$, we find that

$$
\int_{0}^{1} f(x) p_{k}(x) d x=0 \quad \forall k \in \mathbb{N}
$$

Note that $f\left(f-p_{k}\right)$ converges to the zero function uniformly on $[0,1]$ since

$$
\left\|f\left(f-p_{k}\right)\right\|_{\infty} \leqslant\|f\|_{\infty}\left\|f-p_{k}\right\|_{\infty} \leqslant \frac{1}{k}\|f\|_{\infty} \rightarrow 0 \text { as } k \rightarrow \infty ;
$$

thus by the fact that

$$
\int_{0}^{1} f(x)^{2} d x=\int_{0}^{1} f(x)\left[f(x)-p_{k}(x)\right] d x
$$

we find that $\int_{0}^{1} f(x)^{2} d x=0$. Therefore, by the continuity of f, we conclude that $f=0$ on $[0,1]$.
2. Let

$$
\begin{gathered}
D=\left\{k \in \mathbb{N} \mid \text { if } f \in \mathscr{C}([0,1] ; \mathbb{R}) \text { and } f \text { changes signs around } 0<\alpha_{1}<\cdots<\alpha_{k}<1,\right. \\
\text { then } \left.y=f(x) \prod_{j=1}^{k}\left(x-\alpha_{j}\right) \text { does not change sign }\right\}
\end{gathered}
$$

Suppose that $f \in \mathscr{C}([0,1] ; \mathbb{R})$ changes sign only around $0<\alpha_{1}<1$. Then $y=f(x)\left(x-\alpha_{1}\right)$ does not change sign so that $1 \in D$. Assume that $k \in D$. If f changes signs only around $0<\alpha_{1}<\alpha_{2}<\cdots<\alpha_{k+1}<1$, then the function $y=f(x)\left(x-\alpha_{k+1}\right)$ changes signs only around $0<\alpha_{1}<\cdots<\alpha_{k}<1$; thus $y=f(x)\left(x-\alpha_{k+1}\right) \prod_{j=1}^{k}\left(x-\alpha_{j}\right)=f(x) \prod_{j=1}^{k+1}\left(x-\alpha_{j}\right)$ does not change sign which shows that $k+1 \in D$. By induction, we conclude that $D=\mathbb{N}$.
Now suppose the contrary that $f(x)=0$ has at most m distinct real roots $0<\alpha_{1}<\cdots<$ $\alpha_{k}<1$, where $0 \leqslant k \leqslant m$, around which $f(x)$ change signs. Then $y=f(x) \prod_{j=1}^{k}\left(x-\alpha_{j}\right)$ does not change sign. W.L.O.G., we assume that $f(x) \prod_{j=1}^{k}\left(x-\alpha_{j}\right) \geqslant 0$ for all $x \in[0,1]$. Then by the fact that

$$
\int_{0}^{1} f(x) x^{n} d x=0 \quad \forall n \in\{0,1, \cdots, m\}
$$

and $k \leqslant m$, we find that

$$
\int_{0}^{1} f(x) \prod_{j=1}^{k}\left(x-\alpha_{j}\right) d x=0
$$

thus the sign-definite property and the continuity of the function $y=f(x) \prod_{j=1}^{k}\left(x-\alpha_{j}\right)$ implies that $f(x) \prod_{j=1}^{k}\left(x-\alpha_{j}\right)=0$ for all $x \in[0,1]$. Therefore, $f(x) \prod_{j=1}^{k}\left(x-\alpha_{j}\right)=0$ for all $x \in[0,1] \backslash\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right\}$ or equivalently, $f(x)=0$ for all $x \in[0,1] \backslash\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right\}$. The continuity of f further implies that $f=0$ on $[0,1]$, a contradiction to that f has at most m distinct real roots around which f changes signs.

Problem 3. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous. Show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) \cos (n x) d x=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} \int_{0}^{1} f(x) \sin (n x) d x=0
$$

Proof. We only show the latter case since the proof of the former case is the same.
We first show that $\lim _{n \rightarrow \infty} \int_{0}^{1} x^{k} \sin (n x) d x=\lim _{n \rightarrow \infty} \int_{0}^{1} x^{k} \cos (n x) d x=0$ for all $k \in \mathbb{N} \cup\{0\}$. Let

$$
D=\left\{k \in \mathbb{N} \cup\{0\} \mid \lim _{n \rightarrow \infty} \int_{0}^{1} x^{k} \sin (n x) d x=\lim _{n \rightarrow \infty} \int_{0}^{1} x^{k} \cos (n x) d x=0\right\} .
$$

Then $0 \in D$ since

$$
\int_{0}^{1} \sin (n x) d x=\left.\frac{-\cos (n x)}{n}\right|_{x=0} ^{x=1}=\frac{\cos 0-\cos n}{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

and

$$
\int_{0}^{1} \cos (n x) d x=\left.\frac{\sin (n x)}{n}\right|_{x=0} ^{x=1}=\frac{\sin n-\sin 0}{n} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Suppose that $k \in D$. Then

$$
\begin{aligned}
\int_{0}^{1} x^{k+1} \sin (n x) d x & =-\left.\frac{x^{k+1} \cos (n x)}{n}\right|_{x=0} ^{x=1}+\frac{k+1}{n} \int_{0}^{1} x^{k} \cos (n x) d x \\
& =-\frac{\cos n}{n}+\frac{k+1}{n} \int_{0}^{1} x^{k} \cos (n x) d x \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

By induction, $D=\mathbb{N} \cup\{0\}$.
Having established that $D=\mathbb{N} \cup\{0\}$, we immediately conclude that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} p(x) \sin (n x) d x=0 \quad \text { for all polynomial } p
$$

Let $\varepsilon>0$ be given. By the Weierstrass Theorem, there exists a polynomial p such that $\|f-p\|_{\infty}<\frac{\varepsilon}{2}$. By the fact that $\lim _{n \rightarrow \infty} \int_{0}^{1} p(x) \sin (n x) d x=0$, there exists $N>0$ such that

$$
\left|\int_{0}^{1} p(x) \sin (n x) d x\right|<\frac{\varepsilon}{2} \quad \text { whenever } \quad n \geqslant N
$$

Therefore, if $n \geqslant N$,

$$
\begin{aligned}
\left|\int_{0}^{1} f(x) \sin (n x) d x\right| & \leqslant\left|\int_{0}^{1}[f(x)-p(x)] \sin (n x) d x\right|+\left|\int_{0}^{1} p(x) \sin (n x) d x\right| \\
& \leqslant \int_{0}^{1}\|f-p\|_{\infty} d x+\frac{\varepsilon}{2}<\varepsilon
\end{aligned}
$$

which establishes that $\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) \sin (n x) d x=0$.

Problem 4. Put $p_{0}=0$ and define

$$
p_{k+1}(x)=p_{k}(x)+\frac{x^{2}-p_{k}^{2}(x)}{2} \quad \forall k \in \mathbb{N} \cup\{0\}
$$

Show that $\left\{p_{k}\right\}_{k=1}^{\infty}$ converges uniformly to $|x|$ on $[-1,1]$.
Hint: Use the identity

$$
|x|-p_{k+1}(x)=\left[|x|-p_{k}(x)\right]\left[1-\frac{|x|+p_{k}(x)}{2}\right]
$$

to prove that $0 \leqslant p_{k}(x) \leqslant p_{k+1}(x) \leqslant|x|$ if $|x| \leqslant 1$, and that

$$
|x|-p_{k}(x) \leqslant|x|\left(1-\frac{|x|}{2}\right)^{k}<\frac{2}{k+1}
$$

if $|x| \leqslant 1$.
Proof. Let $D=\left\{k \in \mathbb{N}\left|0 \leqslant p_{k}(x) \leqslant p_{k+1}(x) \leqslant|x| \forall x \in[-1,1]\right\}\right.$. We first note that if $0 \leqslant p_{k}(x) \leqslant|x|$ for all $x \in[-1,1]$, then

1. using the iterative formula, $p_{k+1}(x)-p_{k}(x)=\frac{x^{2}-p_{k}^{2}(x)}{2} \geqslant 0$ for all $x \in[-1,1]$ which shows that $p_{k+1}(x) \geqslant p_{k}(x) \geqslant 0$.
2. using (\star) we find that $|x|-p_{k+1}(x) \geqslant\left[|x|-p_{k}(x)\right](1-|x|) \geqslant 0$ which shows that $p_{k+1}(x) \leqslant|x|$. Therefore, D is indeed the set $\left\{k \in \mathbb{N}\left|0 \leqslant p_{k}(x) \leqslant|x| \forall x \in[-1,1]\right\}\right.$. The fact that $p_{1}(x)=\frac{x^{2}}{2}$ implies that $1 \in D$, while if $k \in D$ implies that $k+1 \in D$. By induction, $D=\mathbb{N}$.

Using (\star) again, we find that

$$
0 \leqslant|x|-p_{k}(x)=\left[|x|-p_{k-1}(x)\right]\left[1-\frac{|x|+p_{k}(x)}{2}\right] \leqslant\left[|x|-p_{k-1}(x)\right]\left(1-\frac{|x|}{2}\right) \quad \forall k \in \mathbb{N} ;
$$

thus

$$
\begin{aligned}
0 & \leqslant|x|-p_{k}(x) \leqslant\left[|x|-p_{k-1}(x)\right]\left(1-\frac{|x|}{2}\right) \leqslant\left[|x|-p_{k-2}(x)\right]\left(1-\frac{|x|}{2}\right) \\
& \leqslant \cdots \leqslant\left[|x|-p_{0}(x)\right]\left(1-\frac{|x|}{2}\right)^{k}=|x|\left(1-\frac{|x|}{2}\right)^{k}
\end{aligned}
$$

By the fact that $|x|\left(1-\frac{|x|}{2}\right)^{k} \leqslant \frac{2}{k+1}$ for all $x \in[-1,1]$, we conclude that

$$
\lim _{k \rightarrow \infty} \max _{x \in[-1,1]}\left|p_{k}(x)-|x|\right|=0
$$

which shows that $\left\{p_{k}\right\}_{k=1}^{\infty}$ converges uniformly to $y=|x|$ on $[-1,1]$.
Problem 5. Suppose that p_{n} is a sequence of polynomials converging uniformly to f on $[0,1]$ and f is not a polynomial. Prove that the degrees of p_{n} are not bounded.
Hint: An N th-degree polynomial p is uniquely determined by its values at $N+1$ points x_{0}, \cdots, x_{N} via Lagrange's interpolation formula

$$
p(x)=\sum_{k=0}^{N} \pi_{k}(x) \frac{p\left(x_{k}\right)}{\pi_{k}\left(x_{k}\right)},
$$

where $\pi_{k}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{N}\right) /\left(x-x_{k}\right)=\prod_{\substack{1 \leq j \leq N \\ j \neq k}}\left(x-x_{j}\right)$.

Proof. Suppose the contrary that there exists a sequence of polynomial $\left\{p_{n}\right\}_{k=1}^{\infty}$ which converges uniformly to f on $[0,1]$ and $\operatorname{deg}\left(p_{n}\right) \leqslant N$ for all $n \in \mathbb{N}$. W.L.O.G. we assume that

$$
\left\|p_{n}-f\right\|_{\infty}<1 \quad \forall n \in \mathbb{N} .
$$

Then $\left|p_{n}(x)\right| \leqslant\|f\|_{\infty}+1$ for all $x \in[0,1]$ and $n \in \mathbb{N}$.
Since $\operatorname{deg}\left(p_{n}\right) \leqslant N$, using the Lagrange interpolation formula with $x_{k}=k / N$, we have

$$
p_{n}(x)=\sum_{k=0}^{N} \pi_{k}(x) \frac{p_{n}\left(x_{k}\right)}{\pi_{k}\left(x_{k}\right)}=\sum_{j=0}^{N} a_{j n} x^{j} .
$$

Let $[N / 2]$ denote the largest integer smaller than $N / 2$. Note that

$$
\left|\pi_{k}\left(x_{k}\right)\right|=\frac{k}{N} \cdot \frac{k-1}{N} \cdots \cdots \frac{1}{N} \cdot \frac{1}{N} \cdots \cdots \frac{N-k}{N} \geqslant \frac{[N / 2]!}{N^{N}}
$$

so that

$$
\left|\frac{p_{n}\left(x_{k}\right)}{\pi_{k}\left(x_{k}\right)}\right| \leqslant \frac{\left(\|f\|_{\infty}+1\right) N^{N}}{[N / 2]!} .
$$

Moreover, $\pi_{k}(x)=\sum_{j=0}^{N} c_{j} x^{j}$ with $\left|c_{j}\right| \leqslant C_{[N / 2]}^{N}$. Therefore,

$$
\left|a_{j n}\right|=\left|\sum_{k=0}^{N} c_{j} \frac{p_{n}\left(x_{k}\right)}{\pi_{k}\left(x_{k}\right)}\right| \leqslant(N+1) \frac{\left(\|f\|_{\infty}+1\right) N^{N}}{[N / 2]!} C_{[N / 2]}^{N} \quad \forall 0 \leqslant j \leqslant N \text { and } n \in \mathbb{N} .
$$

In other words, the coefficients of each p_{n} is bounded by a fixed constant. This allows us to pick a subsequence $\left\{p_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{p_{n}\right\}_{n=1}^{\infty}$ such that

$$
\lim _{k \rightarrow \infty} a_{j n_{k}}=a_{j} \text { exists for all } 0 \leqslant j \leqslant N .
$$

This implies that $\left\{p_{n_{k}}\right\}_{k=1}^{\infty}$ converges uniformly to the polynomial $p(x)=\sum_{j=0}^{N} a_{j} x^{j}$ since $\left\{p_{n_{k}}\right\}_{k=1}^{\infty}$ converges pointwise to p and $\left\{p_{n}\right\}_{n=1}^{\infty}$ converges uniformly on $[0,1]$ so that $\left\{p_{n_{k}}\right\}_{k=1}^{\infty}$ converges uniformly on $[0,1]$. On the other hand, since $\left\{p_{n}\right\}_{n=1}^{\infty}$ converges uniformly to f on $[0,1]$, we conclude that $f=p$, a contradiction.

Problem 6. Consider the set of all functions on $[0,1]$ of the form

$$
h(x)=\sum_{j=1}^{n} a_{j} e^{b_{j} x}
$$

where $a_{j}, b_{j} \in \mathbb{R}$. Is this set dense in $\mathscr{C}([0,1] ; \mathbb{R})$?
Proof. Let $\mathcal{A}=\left\{\sum_{j=1}^{n} a_{j} e^{b_{j} x} \mid a_{j}, b_{j} \in \mathbb{R}\right\}$. Then

1. \mathcal{A} is an algebra since if $f(x)=\sum_{j=1}^{n} a_{j} e^{b_{j} x}$ and $g(x)=\sum_{k=1}^{m} c_{k} e^{d_{k} x}$, we have

$$
\left(\sum_{j=1}^{n} a_{j} e^{b_{j} x}\right)\left(\sum_{k=1}^{m} c_{k} e^{d_{k} x}\right)=\sum_{j=1}^{n} \sum_{k=1}^{m} a_{j} c_{k} e^{\left(b_{j}+d_{k}\right) x}=\sum_{\ell=1}^{N} A_{\ell} e^{B_{\ell} x}
$$

for some $A_{\ell}, B_{\ell} \in \mathbb{R}$, and clearly, $f+g \in \mathcal{A}$ and $c f \in \mathcal{A}$ if $c \in \mathbb{R}$.
2. \mathcal{A} separates points of $[0,1]$ since the function $f(x)=e^{x} \in \mathcal{A}$ which is strictly monotone so that $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ for all $x_{1} \neq x_{2}$.
3. \mathcal{A} vanishes at no point of $[0,1]$ since the function $f(x)=e^{x} \in \mathcal{A}$ which is non-zero at every point of $[0,1]$.

By the Stone Theorem, \mathcal{A} is dense in $\mathscr{C}([0,1] ; \mathbb{R})$.

