
Exercise Problem Sets 3
Mar. 05. 2022

Problem 1. Define a set S Ď [0, 1] ˆ [0, 1] by

S =
!( p

m
,
k

m

)
P [0, 1] ˆ [0, 1]

ˇ

ˇ

ˇ
m, p, k P N , gcd(m, p) = 1 and 1 ď k ď m ´ 1

)

.

Show that
ż 1

0

( ż 1

0

1S(x, y) dy
)
dx =

ż 1

0

( ż 1

0

1S(x, y) dx
)
dy = 0

but 1S is not Riemann integrable on [0, 1] ˆ [0, 1].

Proof. Note that for each x P [0, 1], then 1S(x, y) ‰ 0 for only finitely many y P [0, 1]. Therefore, for
each x P [0, 1], 1S(x, ¨) is Riemann integrable on [0, 1] and

ż 1

0

1S(x, y) dy = 0 .

Similarly, for each y P [0, 1], then 1S(x, y) ‰ 0 for only finitely many x P [0, 1]; thus for each y P [0, 1],
1S(x, ¨) is Riemann integrable on [0, 1] and

ż 1

0

1S(x, y) dx = 0 .

Therefore,
ż 1

0

( ż 1

0

1S(x, y) dy
)
dx =

ż 1

0

( ż 1

0

1S(x, y) dx
)
dy = 0 .

However, for each partition P of [0, 1] ˆ [0, 1], we have ∆ X S ‰ H for all ∆ P P ; thus U(1S,P) = 1

for all partition P of [0, 1] ˆ [0, 1]. Therefore,
ż

AˆB

1S(x, y) dy = 1

which, by the Fubini Theorem, implies that 1S is not Riemann integrable on [0, 1] ˆ [0, 1]. ˝

Problem 2. Let f : [0, 1] ˆ [0, 1] Ñ R be given by

f(x, y) =

$

’

&

’

%

22n if (x, y) P [2´n, 2´n+1) ˆ [2´n, 2´n+1), n P N ,

´22n+1 if (x, y) P [2´n, 2´n+1) ˆ [2´n´1, 2´n), n P N ,

0 otherwise .

1. Show that
ż 1

0
f(x, y) dx = 0 for all y P

[
0,

1

2

)
.

2. Show that
ż 1

0
f(x, y) dy = 0 for all x P [0, 1).

3. Justify if the iterated (improper) integrals
ż 1

0

ż 1

0
f(x, y)dxdy and

ż 1

0

ż 1

0
f(x, y) dydx are iden-

tical.



Proof. 1. Since f(x, 0) = 0 for all x P [0, 1], we have
ż 1

0
f(x, 0) dx = 0. Suppose that y P

(
0,

1

2

)
.

Then y P [2´n, 2´n+1) for a unique natural number n ě 2. In this case,

f(x, y) =

$

’

&

’

%

22n if x P [2´n, 2´n+1) ,

´22n´1 if x P [2´n+1, 2´n+2) ,

0 otherwise ,

so that
ż 1

0

f(x, y) dx =

ż

[2´n,2´n+1)

22n dx+

ż

[2´n+1,2´n+2)

´22n´1 dx

= 22n(2´n+1 ´ 2´n) ´ 22n´1(2´n+2 ´ 2´n+1) = 0 .

2. Since f(0, y) for all y P [0, 1], we have
ż 1

0
f(0, y) dy = 0. Suppose tat x P (0, 1). Then

x P [2´n, 2´n+1) for a unique n P N. In this case,

f(x, y) =

$

’

&

’

%

22n if y P [2´n, 2´n+1), n P N ,

´22n+1 if y P [2´n´1, 2´n), n P N ,

0 otherwise ,

so that
ż 1

0

f(x, y) dy =

ż

[2´n,2´n+1)

22n dx+

ż

[2´n´1,2´n)

´22n+1 dx

= 22n(2´n+1 ´ 2´n) ´ 22n+1(2´n ´ 2´n´1) = 0 .

3. By 2, we immediately conclude that
ż 1

0

ż 1

0

f(x, y) dy dx = 0 .

On the other hand, note that if y P
[1
2
, 1
)
, then f(x, y) =

#

4 if x P
[1
2
, 1
)
,

0 otherwise ,
so that

ż 1

0

f(x, y) dx =

ż 1

1
2

4 dx = 2 .

Therefore,
ż 1

0

ż 1

0

f(x, y) dx dy =

ż 1
2

0

ż 1

0

f(x, y) dx dy +

ż 1

1
2

ż 1

0

f(x, y) dx dy =

ż 1

1
2

2 dy = 1

which shows that
ż 1

0

ż 1

0
f(x, y)dxdy ‰

ż 1

0

ż 1

0
f(x, y) dydx for this particular f . ˝



Problem 3 (The multiple integral version of Theorem 6.65 in the lecture note). Let A be a closed
rectangle in Rn, and fk : A Ñ R be a decreasing sequence of bounded functions. Show (without
applying Theorem 6.69 and 6.70 in the lecture note) that if lim

kÑ8
fk(x) = 0 for all x P A, then

lim
kÑ8

ż

A

fk(x) dx = 0 .

Conclude the Monotone Convergence Theorem (Theorem 6.69 in the lecture note) and the Bounded
Convergence Theorem (Theorem 6.70 in the lecture note) using the this conclusion of convergence.

Problem 4. Let A Ď Rn, B Ď Rm be Riemann measurable sets, and f : AˆB Ñ R be non-negative,
uniformly continuous and integrable on A ˆ B. Define F (x) =

ż

B
f(x, y) dy.

1. Show that if B is bounded, then F : A Ñ R is continuous. How about if B is not bounded?

2. Let f have the additional property that for each ε ą 0, there exists N ą 0 such that
ˇ

ˇ

ˇ

ż

BXB(0,k)

(f ^k)(x, y) dy ´

ż

B

f(x, y) dy
ˇ

ˇ

ˇ
ă ε @ k ě N and x P A .

Show that F is continuous on A. In particular, show that if f(x, y) ď g(y) for all (x, y) P AˆB,
and g is integrable on B, then F is continuous.

Proof. 1. If B is bounded, then B has volume. Let ε ą 0 be given. By the uniform continuity of f ,
there exists δ ą 0 such that

ˇ

ˇf(x1, y1) ´ f(x2, y2)
ˇ

ˇ ă
ε

ν(B) + 1
@

ˇ

ˇ(x1, y1) ´ (x2, y2)
ˇ

ˇ ă δ and x1, x2 P A, y1, y2 P B .

Therefore, if |x1 ´ x2| ă δ and x1, x2 P A,
ˇ

ˇF (x1) ´ F (x2)
ˇ

ˇ =
ˇ

ˇ

ˇ

ż

B

[
f(x1, y) ´ f(x2, y)

]
dy

ˇ

ˇ

ˇ
ď

ż

B

ˇ

ˇf(x1, y) ´ f(x2, y)
ˇ

ˇ dy

ď

ż

B

ε

ν(B) + 1
dx ď

εν(B)

ν(B) + 1
ă ε .

This implies that F is uniformly continuous on A.

If B is unbounded, then the argument above does not apply. In fact, consider the case

f(x, y) =

?
x

1 + x2y2
, A = [0, 1] and B = R .

Then f is non-negative and uniformly continuous on A ˆ B (by Exercise Problem ??). Note
that F (0) = 0 while if x ą 0,

F (x) =

ż

R
f(x, y) dy =

ż 8

´8

?
x

1 + x2y2
dy =

?
x

x
arctan(xy)

ˇ

ˇ

ˇ

y=8

y=´8
=

π
?
x
.

Therefore, the Tonelli Theorem implies that
ż

AˆB

f(x, y) d(x, y) =

ż

A

( ż

B

f(x, y) dy
)
dx =

ż 1

0

π
?
x
dx = 2π ă 8

which shows that f is integrable on A ˆ B. However, F is not continuous at x = 0.



2. Let ε ą 0 be given. Since f has the property mentioned above, there exists N ą 0 such that
ˇ

ˇ

ˇ

ż

BXB(0,k)

(f ^k)(x, y) dy ´

ż

B

f(x, y) dy
ˇ

ˇ

ˇ
ă

ε

3
@ k ě N and x P A .

By the uniform continuity of f on A ˆ B, there exists δ ą 0 such that
ˇ

ˇf(x1, y1) ´ f(x2, y2)
ˇ

ˇ ă
ε

3
@

ˇ

ˇ(x1, y1) ´ (x2, y2)
ˇ

ˇ ă δ and x1, x2 P A, y1, y2 P B .

Suppose that |x1 ´ x2| ă δ, x1, x2 P A and y P B.

(a) If f(x1, y) and f(x2, y) are both not greater than N , then
ˇ

ˇ(f ^N)(x1, y) ´ (f ^N)(x2, y)
ˇ

ˇ =
ˇ

ˇf(x1, y) ´ f(x2, y)
ˇ

ˇ ă ε .

(b) If f(x1, y) and f(x2, y) are both greater than N , then
ˇ

ˇ(f ^N)(x1, y) ´ (f ^N)(x2, y)
ˇ

ˇ = |N ´ N | = 0 .

(c) If one and only one of f(x1, y) and f(x2, y) is greater than N , then
ˇ

ˇ(f ^N)(x1, y) ´ (f ^N)(x2, y)
ˇ

ˇ ă
ˇ

ˇf(x1, y) ´ f(x2, y)
ˇ

ˇ ă ε .

Case (a), (b) and (c) show that
ˇ

ˇ(f ^N)(x1, y) ´ (f ^N)(x2, y)
ˇ

ˇ ă
ε

3ν(B(0, N))
@ |x1 ´ x2| ă δ, x1, x2 PA and y PB .

Therefore, if x1, x2 P A and |x1 ´ x2| ă δ,

ˇ

ˇF (x1) ´ F (x2)
ˇ

ˇ ď

ˇ

ˇ

ˇ

ż

BXB(0,N)

(f ^N)(x1, y) dy ´

ż

B

f(x1, y) dy
ˇ

ˇ

ˇ

+
ˇ

ˇ

ˇ

ż

BXB(0,N)

(f ^N)(x2, y) dy ´

ż

B

f(x2, y) dy
ˇ

ˇ

ˇ

+
ˇ

ˇ

ˇ

ż

BXB(0,N)

(f ^N)(x1, y) dy ´

ż

BXB(0,N)

(f ^N)(x2, y) dy
ˇ

ˇ

ˇ

ă
ε

3
+

ε

3
+

ż

BXB(0,N)

ˇ

ˇ(f ^N)(x1, y) ´ (f ^N)(x2, y)
ˇ

ˇ dy ď ε .

This implies that F is uniformly continuous on A.

Now suppose that f(x, y) ď g(y) for all (x, y) P A ˆ B, and g is integrable on B. Then

lim
kÑ8

ż

BXB(0,k)

(g^k)(y) dy =

ż

B

g(y) dy ;

thus there exists N ą 0 such that
ˇ

ˇ

ˇ

ż

BXB(0,k)

(g^k)(y) dy ´

ż

B

g(y) dy
ˇ

ˇ

ˇ
ă ε whenever k ě N .



Therefore, for all k ě N and x P A,
ˇ

ˇ

ˇ

ż

BXB(0,k)

(f ^k)(x, y) dy ´

ż

B

f(x, y) dy
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ż

BXB(0,k)

(f ^k)(x, y) dy ´

ż

BXB(0,k)

f(x, y) dy
ˇ

ˇ

ˇ
+

ż

BXB(0,k)A

f(x, y) dy

ď

ż

BXB(0,k)

ˇ

ˇ(f ^k)(x, y) ´ f(x, y)
ˇ

ˇ dy +

ż

BXB(0,k)A

g(y) dy

ď

ż

tyPBXB(0,k) | f(x,y)ąku

[
f(x, y) ´ k

]
dy +

ż

BXB(0,k)A

g(y) dy

ď

ż

tyPBXB(0,k) | g(y)ąku

[
g(y) ´ k

]
dy +

ż

BXB(0,k)A

g(y) dy

ď

ż

BXB(0,k)

[
g(y) ´ (g^k)(y)

]
dy +

ż

BXB(0,k)A

g(y) dy

=

ż

B

g(y) dy ´

ż

BXB(0,k)

(g^k)(y) dy ă ε .

This shows that f satisfies the condition mentioned in 2, so F is continuous on A. ˝

Problem 5. Let f : R Ñ R be a Riemann measurable function, and F : R Ñ R be defined by

F (x) =

ż

R
f(y) cos(x ´ y) dy

whenever the integral exists. Show that if the function f is integrable, then F is defined on R and is
differentiable on R with derivative

F 1(x) =

ż

R
f(y)

B

Bx
cos(x ´ y) dy = ´

ż

R
f(y) sin(x ´ y) dy .

Proof. Let x P R be given. Since f is Riemann measurable, the function g : R Ñ R defined by
g(y) = f(y) cos(x´ y) is Riemann measurable and |g(y)| ď |f(y)| for all y P R. Since f is integrable,
the comparison test implies that g is integrable. Therefore, F is defined everywhere on R.

Let thku8
k=1 be a non-zero sequence with limit 0. Define

gk(y) = f(y)
cos(x+ hk ´ y) ´ cos(x ´ y)

hk

.

Then for all y P R, lim
kÑ8

gk(y) = f(y)
B

Bx
(cos(x ´ y)) = ´f(y) sin(x ´ y).

Since
ˇ

ˇ

ˇ

d

dx
cosx

ˇ

ˇ

ˇ
ď 1, the Mean Value Theorem implies that

ˇ

ˇ cos(x+ hk ´ y) ´ cos(x ´ y)
ˇ

ˇ ď |hk| .

Therefore,
ˇ

ˇgk(y)
ˇ

ˇ ď
ˇ

ˇf(y)
ˇ

ˇ @x P R .

Since f is integrable on R, |f | is integrable on R; thus the Dominated Convergence Theorem implies
that

lim
kÑ8

F (x+ hk) ´ F (x)

hk

= lim
kÑ8

ż

R
gk(y) dy = ´

ż

R
f(x) sin(x ´ y) dy .



The equality above shows that for each non-zero sequence thku8
k=1 with limit 0, the limit

lim
kÑ8

F (x+ hk) ´ F (x)

hk

= ´

ż

R
f(x) sin(x ´ y) dy

exists. By the definition of the limit of functions,

lim
hÑ0

F (x+ h) ´ F (x)

h
= ´

ż

R
f(x) sin(x ´ y) dy . ˝

Problem 6. Let f : R Ñ R be an integrable Riemann measurable function, and F : R Ñ R be
defined by

F (x) =

ż

R
f(y) cos(xy) dy

(which exists for all x P R since f is integrable). Show that if the function g(x) = xf(x) is integrable,
then F is differentiable on R and

F 1(y) =

ż

R
f(x)

B

By
cos(xy) dy = ´

ż

R
xf(x) sin(xy) dy .

Proof. Let y P R be given, and thku8
k=1 be a non-zero sequence with limit 0. Define

gk(x) = f(x)
cos(x(y + hk)) ´ cos(xy)

hk

.

Then for all x P R, lim
kÑ8

gk(x) = f(x)
B

By
(cos(xy)) = ´xf(x) sin(xy).

Since
ˇ

ˇ

ˇ

d

dy
cosx

ˇ

ˇ

ˇ
ď 1, the Mean Value Theorem implies that

ˇ

ˇ cos(x(y + hk)) ´ cos(xy)
ˇ

ˇ ď |xhk| .

Therefore,
ˇ

ˇgk(x)
ˇ

ˇ ď
ˇ

ˇxf(x)
ˇ

ˇ =
ˇ

ˇg(x)
ˇ

ˇ @x P R .

Since g is integrable on R, |g| is integrable on R; thus the Dominated Convergence Theorem implies
that

lim
kÑ8

F (y + hk) ´ F (y)

hk

= lim
kÑ8

ż

R
hk(x) dy = ´

ż

R
xf(x) sin(xy) dy .

The equality above shows that for each non-zero sequence thku8
k=1 with limit 0, the limit

lim
kÑ8

F (y + hk) ´ F (y)

hk

= ´

ż

R
xf(x) sin(xy) dy

exists. By the definition of the limit of functions,

lim
hÑ0

F (y + h) ´ F (y)

h
= ´

ż

R
xf(x) sin(xy) dy . ˝

Problem 7. Let f(x, y) =

$

&

%

e´xy sin y

y
if y ‰ 0 ,

1 if y = 0 .
.



1. Show that fx(x, y) is continuous everywhere, and show that f(x, ¨) is integrable on [0,8) for
all x ą 0.

2. Define F (x) =
ż 8

0
f(x, y) dy for x ą 0. Show that F 1(x) = ´

1

x2 + 1
.

3. Show that F (x) =
π

2
´ tan´1 x if x ą 0, and conclude that

ż 8

0

sinx

x
dx =

π

2
.

Proof. 1. Note that if y ‰ 0, fx(x, y) = e´xy sin y while fx(x, 0) = 0. Clearly fx is continuous on R2

except perhaps on the x-axis. On the other hand, since lim
(x,y)Ñ(a,0)

f(x, y) = 0, we conclude that
fx is also continuous on the x-axis. Therefore, fx is continuous everywhere.

Let x ą 0 be given. Then
ˇ

ˇf(x, y)
ˇ

ˇ ď e´xy. Since the right-hand side function, for given x ą 0,
is integrable on [0,8), the comparison test implies that f(x, ¨) is integrable on [0,8).

2. Let x ą 0 be given, and thku8
k=1 be a non-zero sequence with limit 0. W.L.O.G., we can assume

that |hk| ă
x

2
since x ą 0. Define

gk(y) =

$

&

%

e´yhk ´ 1

hk
e´xy sin y

y
if y ‰ 0 ,

0 if y = 0 .

The Mean Value Theorem implies that
ˇ

ˇ

ˇ

e´yhk ´ 1

hk

ˇ

ˇ

ˇ
ď e

xy
2 |y|; thus

ˇ

ˇgk(y)
ˇ

ˇ ď e´
xy
2 @ y ě 0 .

Since the right-hand side function, for given x ą 0, is integrable on [0,8), the Dominated
Convergence Theorem implies that

lim
kÑ8

F (x+ hk) ´ F (x)

hk

= lim
kÑ8

ż 8

0

f(x+ hk, y) ´ f(x, y)

hk

dy = lim
kÑ8

ż 8

0

gk(y) dy

=

ż 8

0

lim
kÑ8

gk(y) dy = ´

ż 8

0

e´xy sin y dy

Integrating by parts, by the fact x ą 0 we find that
ż 8

0

e´xy sin y dy = ´e´xy cos y
ˇ

ˇ

ˇ

y=8

y=0
´ x

ż 8

0

e´xy cos y dy

= 1 ´ x
[
e´xy sin y

ˇ

ˇ

ˇ

y=8

y=0
+ x

ż 8

0

e´xy sin y dy
]

= 1 ´ x2

ż 8

0

e´xy sin y dy ;

thus we conclude that
lim
kÑ8

F (x+ hk) ´ F (x)

hk

= ´
1

1 + x2



for all x ą 0 and non-zero sequence thku8
k=1 with limit 0. Therefore, for x ą 0 the limit

lim
hÑ0

F (x+ h) ´ F (x)

h
exists (so that F is differentiable on (0,8)) and

F 1(x) = lim
hÑ0

F (x+ h) ´ F (x)

h
=

1

1 + x2
@x ą 0 .

3. By the (generalized version of) Fundamental Theorem of Calculus, for a, b ą 0 we have

F (b) ´ F (a) =

ż b

a

F 1(x) dx = ´

ż b

a

1

1 + x2
dx = arctanx

ˇ

ˇ

ˇ

x=b

x=a
= arctan a ´ arctan b .

Note that for a ą 0 we have

|F (a)| ď

ż 8

0

e´ay dy =
e´ay

´a

ˇ

ˇ

ˇ

y=8

y=0
=

1

a
;

thus lim
aÑ8

F (a) = 0 by the Sandwich lemma. Therefore, for x ą 0,

F (x) = lim
aÑ8

[
F (x) ´ F (a)

]
= lim

aÑ8

(
arctan a ´ arctanx

)
=

π

2
´ arctanx .

Finally, we show that F (0) = lim
xÑ0+

F (x). Let ε ą 0 be given. Since

B

By

(´e´xy cos y ´ xe´xy sin y

x2 + 1
+ cos y

)
= (e´xy ´ 1) sin y ,

integrating by parts shows that for all n ą 0,
ż 8

n

(e´xy ´ 1)
sin y

y
dy =

1

y

(
´e´xy cos y ´ xe´xy sin y

x2 + 1
+ cos y

)ˇ

ˇ

ˇ

y=8

y=n

+

ż 8

n

(
´e´xy cos y ´ xe´xy sin y

x2 + 1
+ cos y

) 1

y2
dy .

By the fact that
ˇ

ˇ

ˇ

´e´xy cos y ´ xe´xy sin y

x2 + 1
+ cos y

ˇ

ˇ

ˇ
ď

x+ 1

x2 + 1
+ 1 ď

5

2
ă 3 ,

we have
ˇ

ˇ

ˇ

ż 8

n

(e´xy ´ 1)
sin y

y
dy

ˇ

ˇ

ˇ
ď

ż 8

n

3

y2
dy +

3

n
=

6

n
.

Therefore, for all n ą 0,
ˇ

ˇF (x) ´ F (0)
ˇ

ˇ =
ˇ

ˇ

ˇ

ż 8

0

(e´xy ´ 1)
sin y

y
dy

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ż n

0

(e´xy ´ 1)
sin y

y
dy

ˇ

ˇ

ˇ
+

ˇ

ˇ

ˇ

ż 8

n

(e´xy ´ 1)
sin y

y
dy

ˇ

ˇ

ˇ

ď

ż n

0

(1 ´ e´xy) dy +
6

n
= n+

e´nx ´ 1

x
+

6

n

so that
lim sup
xÑ0+

ˇ

ˇF (x) ´ F (0)
ˇ

ˇ ď
6

n
@n ą 0 .

Since n ą 0 is given arbitrarily, we conclude that lim sup
xÑ0+

ˇ

ˇF (x) ´ F (0)
ˇ

ˇ = 0 which shows that

lim
xÑ0+

F (x) = F (0). As a consequence,
ż 8

0

sinx

x
dx = F (0) = lim

xÑ0+
F (x) = lim

xÑ0+

(π
2

´ arctanx
)
=

π

2
. ˝


