
Exercise Problem Sets 2
Feb. 26. 2022

Problem 1. For a function f : [a, b] Ñ R, define the total variation of f on [a, b] by

V b
a (f) = sup

!

n
ÿ

k=1

ˇ

ˇf(xk) ´ f(xk´1)
ˇ

ˇ

ˇ

ˇ

ˇ
ta = x0 ă ¨ ¨ ¨ ă xn = bu is a partition of [a, b]

)

.

Sometimes V b
a (f) is written as }f}TV([a,b]).

A function f : [a, b] is said to have bounded variation on [c, d] or be of bounded variation
on [c, d], where [c, d] Ď [a, b], if V d

c (f) ă 8. Complete the following.

1. Let BV([a, b]) =
␣

f : [a, b] Ñ R
ˇ

ˇV b
a (f) ă 8

(

, called the space of functions of bounded variation
(on [a, b]). Show that BV([a, b]) is a vector space.

2. Is V b
a a norm on BV([a, b]); that is, does } ¨ } : BV([a, b]) Ñ R defined by }f} ” V b

a (f) satisfy
Definition 2.15 in the lecture note?

3. Recall that C 1([a, b];R) ”
␣

f : [a, b] Ñ R
ˇ

ˇ f 1 is continuous on [a, b]
(

. Show that if f P

C 1([a, b];R), then f is of bounded variation.

4. Show that if f P C 1([a, b];R), then V b
a (f) =

ż b

a

ˇ

ˇf 1(x)
ˇ

ˇ dx.

5. Show that if V b
a (f) ă 8 (f is not necessarily differentiable everywhere), then

V b
a (f) = sup

!

ż b

a
f(x)ϕ 1(x) dx

ˇ

ˇ

ˇ
ϕ P C 1([a, b];R), |ϕ(x)| ď 1 for all x P [a, b], ϕ(a) = ϕ(b) = 0

)

.

Proof. For a partition P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu, define

V (f,P) =
n
ÿ

k=1

ˇ

ˇf(xk) ´ f(xk´1)
ˇ

ˇ .

We note that the triangle inequality implies that

V (f,P) ď V (f,P 1) whenever P 1 is a refinement of P . (0.1)

2. V b
a is not a norm since any constant function has zero variation. This violates property (b) in

Definition 2.15 in the lecture note.

3. Suppose that f is continuously differentiable on [a, b]. By the Extreme Value Theorem,
sup
xP[a,b]

ˇ

ˇf 1(x)
ˇ

ˇ ă 8. Therefore, for each partition P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu of

[a, b], the Mean Value Theorem implies that

V (f,P) =
n
ÿ

k=1

ˇ

ˇf(xk) ´ f(xk´1)
ˇ

ˇ ď

n
ÿ

k=1

sup
xP[xk´1,xk]

ˇ

ˇf 1(x)
ˇ

ˇ(xk ´ xk´1)

ď sup
xP[a,b]

ˇ

ˇf 1(x)
ˇ

ˇ

n
ÿ

k=1

(xk ´ xk´1) = (b ´ a) sup
xP[a,b]

ˇ

ˇf 1(x)
ˇ

ˇ ă 8 ;

thus f P BV([a, b]).



4. Suppose that f is continuously differentiable on [a, b]. Then f 1 is continuous on [a, b]; thus |f 1|

is also continuous on [a, b]. Therefore, I =
ż b

a

ˇ

ˇf 1(x)
ˇ

ˇ dx exists. Next we show that V b
a (f) = I.

Let ε ą 0. By the definition of total variation, there exists a partition P1 of [a, b] such that

V b
a (f) ´

ε

2
ă V (f,P1) .

By the definition of integrals, there exists a partition P2 of [a, b] such that

U
(
|f 1|,P2

)
ă I +

ε

2
.

Let P3 = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu be the common refinement of P1 and P2. By the Mean
Value Theorem, for each 1 ď k ď n there exists ξk P (xk´1, xk) such that

f(xk) ´ f(xk´1) = f 1(ξk)(xk ´ xk´1) ;

thus (0.1) implies that

V b
a (f) ´

ε

2
ă V (f,P) =

n
ÿ

k=1

ˇ

ˇf(xk) ´ f(xk´1)
ˇ

ˇ =
n
ÿ

k=1

ˇ

ˇf 1(ξk)
ˇ

ˇ(xk ´ xk´1)

ď

n
ÿ

k=1

sup
xP[xk´1,xk]

ˇ

ˇf 1(x)
ˇ

ˇ(xk ´ xk´1) = U
(
|f 1|,P

)
ď U

(
|f 1|,P2

)
ă I +

ε

2
.

Therefore,
V b
a (f) ă I + ε . (0.2)

On the other hand, by the uniform continuity, there exists δ ą 0 such that
ˇ

ˇ

ˇ

ˇ

ˇf 1(x)
ˇ

ˇ ´
ˇ

ˇf 1(y)
ˇ

ˇ

ˇ

ˇ

ˇ
ă

ε

2(b ´ a)
whenever |x ´ y| ă δ and x, y P [a, b] .

Let P4 = ta = y0 ă y1 ă ¨ ¨ ¨ ă ym = bu be a refinement of P2 such that }P2} ă δ. The Mean
Value Theorem implies that for each 1 ď k ď m, there exists ηk P (yk´1, yk) such that

f(yk) ´ f(yk´1) = f 1(ηk)(yk ´ yk´1) .

Then for each 1 ď k ď m,

sup
yP[yk´1,yk]

ˇ

ˇf 1(y)
ˇ

ˇ ď
ˇ

ˇf 1(ηk)
ˇ

ˇ+
ε

2(b ´ a)
.

The inequality above further implies that

I ď U
(
|f 1|,P4) =

m
ÿ

k=1

sup
yP[yk´1,yk]

ˇ

ˇf 1(y)
ˇ

ˇ(yk ´ yk´1)

ď

m
ÿ

k=1

(
ˇ

ˇf 1(ηk)
ˇ

ˇ+
ε

2(b ´ a)

)
(yk ´ yk´1) ď

n
ÿ

k=1

ˇ

ˇf(yk) ´ f(yk´1)
ˇ

ˇ+
ε

2

ă V b
a (f) + ε .

Therefore, together with (0.2), we conclude that
ˇ

ˇV b
a (f) ´ I

ˇ

ˇ ă ε .



Since ε ą 0 is given arbitrary, we find that V b
a (f) = I. ˝

Problem 2. Complete the following.

1. Show that if A is a set of volume zero, then A has measure zero. Is it true that if A has measure
zero, then A also has volume zero?

2. Let a, b P R and a ă b. Show that the interval [a, b] does not have measure zero (in R).

3. Let A Ď [a, b] be a set of measure zero (in R). Show that [a, b]zA does not have measure zero
(in R).

4. Show that the Cantor set (defined in Problem 9 of Exercise 7 in the fall semester) has volume
zero.

Proof. 1. No. The set Q X [0, 1] has measure zero; however, it does not have volume since Dirichlet
function is not Riemann integrable on [0, 1].

2. This is a direct consequence of Corollary 6.25 in the lecture note.

3. Suppose the contrary that [a, b]zA has measure zero. By the fact that countable union of
measure zero sets has measure zero (Theorem 6.26 in the lecture note), we conclude that

[a, b] = A Y ([a, b]zA)

has measure zero, a contradiction to Corollary 6.25 in the lecture note.

4. Let En be the set defined in Problem 9 of Exercise 7 in the fall semester. Then En is the
union of finite intervals whose volumes sum to 2n

3n
. Therefore, for each ε ą 0 there exist finite

rectangles S1, S2, ¨ ¨ ¨ , SN whose disjoint union is EN and
N
ř

k=1

ν(Sk) =
2N

3N
ă ε. This shows

that the Cantor set has volume zero.
˝

Problem 3. Let A =
8
Ť

k=1

B
(1
k
,
1

2k

)
=

8
Ť

k=1

(1
k

´
1

2k
,
1

k
+

1

2k

)
be a subset of R. Does A have volume?

Proof. We first show that sA =
␣

0
(

Y
8
Ť

k=N+1

[1
k

´
1

2k
,
1

k
+

1

2k

]
.

1. Clearly
8
Ť

k=N+1

[1
k

´
1

2k
,
1

k
+

1

2k

]
Ď sA. In fact, we have

Ť

αPI

ĎBα Ď cl
(
Ť

αPI

Bα

)
: if x P

Ť

αPI

ĎBα, then

x P ĎBα for some α P I which implies that there exists α P I and txℓu
8
ℓ=1 P Bα Ď

Ť

αPI

Bα such

that xℓ Ñ x as ℓ Ñ 8. Therefore, x P cl
(
Ť

αPI

Bα

)
.

2. Suppose that x P sA. Then there exists txℓu
8
ℓ=1 Ď A such that xℓ Ñ x as ℓ Ñ 8. Since every

element in A is positive, we conclude that x ě 0.



(a) the case x = 0: Since txℓu
8
ℓ=1 defined by xℓ =

1

ℓ
is a sequence in A, we conclude that

0 P sA since lim
ℓÑ8

xℓ = 0.

(b) the case x ą 0: By the definition of the limit of sequences, there exists N ą 0 such
that xℓ P

(x
2
,
3x

2

)
for all ℓ ě N . Since lim

kÑ8

1

k
+

1

2k
= 0, there exists M ą 0 such that

1

k
+

1

2k
ă

x

2
for all k ě M . Therefore,

A X
(x
2
,
3x

2

)
=

M´1
ď

k=1

(1
k

´
1

2k
,
1

k
+

1

2k

)
;

thus there exists 1 ď j ď M ´ 1 such that

#
␣

ℓ P N
ˇ

ˇxℓ P
(1
j

´
1

2j
,
1

j
+

1

2j

)
= 8 .

Let
␣

xℓk

(8

k=1
be a subsequence of txℓu

8
ℓ=1 satisfying that

␣

xℓk

(8

k=1
Ď

(1
j

´
1

2j
,
1

j
+

1

2j

)
, we

conclude that x P
[1
j

´
1

2j
,
1

j
+

1

2j

]
since lim

kÑ8
xℓk = x.

Having shown that sA =
␣

0
(

Y
8
Ť

k=N+1

[1
k

´
1

2k
,
1

k
+

1

2k

]
, we conclude that

BA = sAzÅ = sAzA Ď t0u Y

!

1

k
´

1

2k

ˇ

ˇ

ˇ
k P N

)

Y

!

1

k
+

1

2k

ˇ

ˇ

ˇ
k P N

)

;

thus BA has measure zero. This implies that A has volume. ˝

Problem 4. Prove the following statements.

1. The function f(x) = sin 1

x
is Riemann integrable on (0, 1).

2. Let f : (0, 1] Ñ R be given by

f(x) =

$

&

%

1

p
if x =

q

p
P Q, (p, q) = 1 ,

0 if x is irrational.

Then f is Riemann integrable on (0, 1]. Find
ż

(0,1]
f(x)dx as well.

3. Let A Ď Rn be a bounded set, and f : A Ñ R is Riemann integrable. Then fk（f 的 k 次方）

is integrable for all k P N.

Proof. 1. Note that (0, 1) has volume, f is bounded on (0, 1) and f is continuous on (0, 1). Therefore,
the Lebesgue Theorem (or its corollary) implies that f is Riemann integrable on (0, 1).

2. In Calculus we have shown that f is continuous on QA X (0, 1] so that the collection of dis-
continuities of f (0, 1] is Q X (0, 1]. Since Q X (0, 1] is countable, we find that the collection of
discontinuities of f (0, 1] has measure zero. Therefore, f is Riemann integrable on (0, 1].



Let P be a partition of (0, 1]. Then L(f,P) = 0 since

inf
xP∆

f
(0, 1]

(x) = 0 @∆ P P .

Therefore,
ż

A
f(x) dx = 0; thus the fact that f is Riemann integrable on (0, 1] shows that

ż

(0,1]
f(x) dx = 0.

3. First we note that the fact that f is Riemann integrable on A implies that f is bounded on A.
Therefore, fk is bounded on A. Moreover, the Lebesgue Theorem implies that the collection
D of discontinuities of fA has measure zero. Since fk

A

=
(
f

A)k, we find that the collection of
discontinuities of fk

A is exactly D; thus has measure zero. The
Lebesgue Theorem then implies that fk is Riemann integrable on A. ˝

Problem 5. Suppose that f : [a, b] Ñ R is Riemann integrable on [a, b], and the set
␣

x P [a, b]
ˇ

ˇ f(x) ‰

0
(

has measure zero. Show that
ż b

a
f(x) dx = 0.

Proof. First we note that for each [c, d] Ď [a, b], then there exists x P [c, d] such that f(x) = 0 for
otherwise f(x) ‰ 0 for all x P [c, d] so that

[c, d] Ď
␣

x P [a, b]
ˇ

ˇ f(x) ‰ 0
(

and this implies that [c, d] is a set of measure zero, a contradiction to Corollary 6.25 in the lecture
note. Therefore, L(|f |,P) ď 0 and U(f,P) ě 0 for all partitions P of [a, b] which shows that
ż b

a
f(x) dx ď 0 and

ż b

a
f(x) dx ě 0. Since f is Riemann integrable on [a, b], we conclude that

ż b

a
f(x) dx = 0. ˝

Problem 6. Find an example of the inequality
ż

A

f(x) dx+

ż

A

g(x) dx ă

ż

A

(f + g)(x) dx ă

ż

A

(f + g)(x) dx ă

ż

A

f(x) dx+

ż

A

g(x) dx .

Solution. Let f, g : [0, 2] Ñ R be defined by

f(x) =

"

1 if x P Q X [0, 2] ,
0 otherwise , and g(x) =

"

1 if x P QA X [0, 1] ,
0 otherwise . .

Then for A = [0, 2],
ż

A

f(x) dx =

ż

A

g(x) dx = 0 ,

ż

A

f(x) dx = 2 and
ż

A

g(x) dx = 1 .

Moreover,
(f + g)(x) =

"

1 if x P [0, 1] Y (Q X [1, 2]) ,
0 otherwise.

so that
ż

A

(f + g)(x) dx = 1 and
ż

A

(f + g)(x) dx = 2 .



Therefore, f and g satisfy the desired inequality.
Another example is given as follows: let f, g : [0, 1] Ñ R be defined by

f(x) =

"

1 if x P Q X [0, 1] ,

0 if x P QA X [0, 1] ,
and g(x) =

"

0 if x P Q X [0, 1] ,

2 if x P QA X [0, 1] ,

Then
(f + g)(x) =

"

1 if x P Q X [0, 1] ,

2 if x P QA X [0, 1] ,

so that we have
ż

[0,1]
f(x) dx =

ż

[0,1]
g(x) dx = 0,

ż

[0,1]
f(x) dx =

ż

[0,1]
(f + g)(x) dx = 1, and

ż

[0,1]
g(x) dx =

ż

[0,1]
(f + g)(x) dx = 2. ˝

Problem 7. Let A Ď Rn be a bounded set, and f : A Ñ R be a bounded function. Show that if f
is Riemann integrable on A, then |f | is also Riemann integrable on A.

Proof. Method 1: Since f is Riemnn integrable on A, the Lebesgue Theorem implies that the
collection of discontinuities of fA has measure zero. Note that if fA is continuous at a P A,
then |f |

A is also continuous at a since |f |
A

=
ˇ

ˇf
Aˇ
ˇ. Therefore, the collection of discontinuities of

|f |
A is a subset of a measure zero set, the collection of discontinuities of fA; thus the collection

of discontinuities of |f |
A has measure zero. The Lebesgue Theorem then shows that |f | is

Riemann integrable on A.

Method 2: Let ε ą 0 be given. Since f is Riemann integrable on A, by Riemann’s condition there
exists a partition P of A such that

U(f,P) ´ L(f,P) ă ε .

Note that for each ∆ P P ,

sup
xP∆

ˇ

ˇf
A

(x)
ˇ

ˇ ´ inf
xP∆

ˇ

ˇf
A

(x)
ˇ

ˇ ď sup
xP∆

f
A

(x) ´ inf
xP∆

f
A

(x) ;

thus

U(|f |,P) ´ L(|f |,P) =
ÿ

∆PP

(
sup
xP∆

ˇ

ˇf
A

(x)
ˇ

ˇ ´ inf
xP∆

ˇ

ˇf
A

(x)
ˇ

ˇ

)
ν(∆)

ď
ÿ

∆PP

(
sup
xP∆

f
A

(x) ´ inf
xP∆

f
A

(x)
)
ν(∆) = U(f,P) ´ L(f,P) ă ε .

By Riemann’s condition, we conclude that |f | is Riemann integrable on A. ˝


