Exercise Problem Sets 2

Problem 1. For a function $f : [a, b] \to \mathbb{R}$, define the **total variation** of f on [a, b] by

$$V_a^b(f) = \sup\left\{\sum_{k=1}^n |f(x_k) - f(x_{k-1})| \left| \{a = x_0 < \dots < x_n = b\} \text{ is a partition of } [a, b] \right\}\right\}$$

Sometimes $V_a^b(f)$ is written as $||f||_{\mathrm{TV}([a,b])}$.

A function f : [a, b] is said to have **bounded variation** on [c, d] or be **of bounded variation** on [c, d], where $[c, d] \subseteq [a, b]$, if $V_c^d(f) < \infty$. Complete the following.

- 1. Let $BV([a, b]) = \{f : [a, b] \to \mathbb{R} \mid V_a^b(f) < \infty\}$, called the space of functions of bounded variation (on [a, b]). Show that BV([a, b]) is a vector space.
- 2. Is V_a^b a norm on BV([a, b]); that is, does $\|\cdot\|$: BV([a, b]) $\rightarrow \mathbb{R}$ defined by $\|f\| \equiv V_a^b(f)$ satisfy Definition 2.15 in the lecture note?
- 3. Recall that $\mathscr{C}^1([a,b];\mathbb{R}) \equiv \{f : [a,b] \to \mathbb{R} \mid f' \text{ is continuous on } [a,b]\}$. Show that if $f \in \mathscr{C}^1([a,b];\mathbb{R})$, then f is of bounded variation.
- 4. Show that if $f \in \mathscr{C}^1([a,b];\mathbb{R})$, then $V_a^b(f) = \int_a^b |f'(x)| dx$.
- 5. Show that if $V_a^b(f) < \infty$ (f is not necessarily differentiable everywhere), then

$$V_a^b(f) = \sup\left\{ \int_a^b f(x)\phi'(x) \, dx \, \Big| \, \phi \in \mathscr{C}^1([a,b];\mathbb{R}), |\phi(x)| \le 1 \text{ for all } x \in [a,b], \, \phi(a) = \phi(b) = 0 \right\}.$$

Proof. For a partition $\mathcal{P} = \{a = x_0 < x_1 < \cdots < x_n = b\}$, define

$$V(f, \mathcal{P}) = \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})|.$$

We note that the triangle inequality implies that

$$V(f, \mathcal{P}) \leq V(f, \mathcal{P}')$$
 whenever \mathcal{P}' is a refinement of \mathcal{P} . (0.1)

- 2. V_a^b is not a norm since any constant function has zero variation. This violates property (b) in Definition 2.15 in the lecture note.
- 3. Suppose that f is continuously differentiable on [a, b]. By the Extreme Value Theorem, $\sup_{x \in [a,b]} |f'(x)| < \infty$. Therefore, for each partition $\mathcal{P} = \{a = x_0 < x_1 < \cdots < x_n = b\}$ of [a, b], the Mean Value Theorem implies that

$$V(f, \mathcal{P}) = \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| \leq \sum_{k=1}^{n} \sup_{x \in [x_{k-1}, x_k]} |f'(x)| (x_k - x_{k-1})$$

$$\leq \sup_{x \in [a,b]} |f'(x)| \sum_{k=1}^{n} (x_k - x_{k-1}) = (b-a) \sup_{x \in [a,b]} |f'(x)| < \infty;$$

thus $f \in BV([a, b])$.

4. Suppose that f is continuously differentiable on [a, b]. Then f' is continuous on [a, b]; thus |f'|is also continuous on [a, b]. Therefore, $I = \int_a^b |f'(x)| dx$ exists. Next we show that $V_a^b(f) = I$. Let $\varepsilon > 0$. By the definition of total variation, there exists a partition \mathcal{P}_1 of [a, b] such that

$$V_a^b(f) - \frac{\varepsilon}{2} < V(f, \mathcal{P}_1)$$

By the definition of integrals, there exists a partition \mathcal{P}_2 of [a, b] such that

$$U(|f'|, \mathcal{P}_2) < I + \frac{\varepsilon}{2}.$$

Let $\mathcal{P}_3 = \{a = x_0 < x_1 < \cdots < x_n = b\}$ be the common refinement of \mathcal{P}_1 and \mathcal{P}_2 . By the Mean Value Theorem, for each $1 \leq k \leq n$ there exists $\xi_k \in (x_{k-1}, x_k)$ such that

$$f(x_k) - f(x_{k-1}) = f'(\xi_k)(x_k - x_{k-1});$$

thus (0.1) implies that

$$V_a^b(f) - \frac{\varepsilon}{2} < V(f, \mathcal{P}) = \sum_{k=1}^n |f(x_k) - f(x_{k-1})| = \sum_{k=1}^n |f'(\xi_k)| (x_k - x_{k-1})$$

$$\leq \sum_{k=1}^n \sup_{x \in [x_{k-1}, x_k]} |f'(x)| (x_k - x_{k-1}) = U(|f'|, \mathcal{P}) \leq U(|f'|, \mathcal{P}_2) < I + \frac{\varepsilon}{2}.$$

Therefore,

$$V_a^b(f) < I + \varepsilon \,. \tag{0.2}$$

On the other hand, by the uniform continuity, there exists $\delta > 0$ such that

$$\left| \left| f'(x) \right| - \left| f'(y) \right| \right| < \frac{\varepsilon}{2(b-a)}$$
 whenever $|x-y| < \delta$ and $x, y \in [a, b]$.

Let $\mathcal{P}_4 = \{a = y_0 < y_1 < \cdots < y_m = b\}$ be a refinement of \mathcal{P}_2 such that $\|\mathcal{P}_2\| < \delta$. The Mean Value Theorem implies that for each $1 \leq k \leq m$, there exists $\eta_k \in (y_{k-1}, y_k)$ such that

$$f(y_k) - f(y_{k-1}) = f'(\eta_k)(y_k - y_{k-1})$$

Then for each $1 \leq k \leq m$,

$$\sup_{y \in [y_{k-1}, y_k]} \left| f'(y) \right| \leq \left| f'(\eta_k) \right| + \frac{\varepsilon}{2(b-a)}$$

The inequality above further implies that

$$I \leq U(|f'|, \mathcal{P}_4) = \sum_{k=1}^{m} \sup_{y \in [y_{k-1}, y_k]} |f'(y)| (y_k - y_{k-1})$$

$$\leq \sum_{k=1}^{m} (|f'(\eta_k)| + \frac{\varepsilon}{2(b-a)}) (y_k - y_{k-1}) \leq \sum_{k=1}^{n} |f(y_k) - f(y_{k-1})| + \frac{\varepsilon}{2}$$

$$< V_a^b(f) + \varepsilon.$$

Therefore, together with (0.2), we conclude that

$$\left|V_a^b(f) - I\right| < \varepsilon \,.$$

Since $\varepsilon > 0$ is given arbitrary, we find that $V_a^b(f) = I$.

Problem 2. Complete the following.

- 1. Show that if A is a set of volume zero, then A has measure zero. Is it true that if A has measure zero, then A also has volume zero?
- 2. Let $a, b \in \mathbb{R}$ and a < b. Show that the interval [a, b] does not have measure zero (in \mathbb{R}).
- 3. Let $A \subseteq [a, b]$ be a set of measure zero (in \mathbb{R}). Show that $[a, b] \setminus A$ does not have measure zero (in \mathbb{R}).
- 4. Show that the Cantor set (defined in Problem 9 of Exercise 7 in the fall semester) has volume zero.
- *Proof.* 1. No. The set $\mathbb{Q} \cap [0, 1]$ has measure zero; however, it does not have volume since Dirichlet function is not Riemann integrable on [0, 1].
 - 2. This is a direct consequence of Corollary 6.25 in the lecture note.
 - 3. Suppose the contrary that $[a, b] \setminus A$ has measure zero. By the fact that countable union of measure zero sets has measure zero (Theorem 6.26 in the lecture note), we conclude that

$$[a,b] = A \cup ([a,b] \setminus A)$$

has measure zero, a contradiction to Corollary 6.25 in the lecture note.

4. Let E_n be the set defined in Problem 9 of Exercise 7 in the fall semester. Then E_n is the union of finite intervals whose volumes sum to $\frac{2^n}{3^n}$. Therefore, for each $\varepsilon > 0$ there exist finite rectangles S_1, S_2, \dots, S_N whose disjoint union is E_N and $\sum_{k=1}^N \nu(S_k) = \frac{2^N}{3^N} < \varepsilon$. This shows that the Cantor set has volume zero.

Problem 3. Let $A = \bigcup_{k=1}^{\infty} B\left(\frac{1}{k}, \frac{1}{2^k}\right) = \bigcup_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{2^k}, \frac{1}{k} + \frac{1}{2^k}\right)$ be a subset of \mathbb{R} . Does A have volume?

Proof. We first show that $\overline{A} = \{0\} \cup \bigcup_{k=N+1}^{\infty} \left[\frac{1}{k} - \frac{1}{2^k}, \frac{1}{k} + \frac{1}{2^k}\right].$

- 1. Clearly $\bigcup_{k=N+1}^{\infty} \left[\frac{1}{k} \frac{1}{2^k}, \frac{1}{k} + \frac{1}{2^k}\right] \subseteq \overline{A}$. In fact, we have $\bigcup_{\alpha \in I} \overline{B_\alpha} \subseteq \operatorname{cl}\left(\bigcup_{\alpha \in I} B_\alpha\right)$: if $x \in \bigcup_{\alpha \in I} \overline{B_\alpha}$, then $x \in \overline{B_\alpha}$ for some $\alpha \in I$ which implies that there exists $\alpha \in I$ and $\{x_\ell\}_{\ell=1}^{\infty} \in B_\alpha \subseteq \bigcup_{\alpha \in I} B_\alpha$ such that $x_\ell \to x$ as $\ell \to \infty$. Therefore, $x \in \operatorname{cl}\left(\bigcup_{\alpha \in I} B_\alpha\right)$.
- 2. Suppose that $x \in \overline{A}$. Then there exists $\{x_\ell\}_{\ell=1}^{\infty} \subseteq A$ such that $x_\ell \to x$ as $\ell \to \infty$. Since every element in A is positive, we conclude that $x \ge 0$.

- (a) the case x = 0: Since $\{x_\ell\}_{\ell=1}^{\infty}$ defined by $x_\ell = \frac{1}{\ell}$ is a sequence in A, we conclude that $0 \in \overline{A}$ since $\lim_{\ell \to \infty} x_\ell = 0$.
- (b) the case x > 0: By the definition of the limit of sequences, there exists N > 0 such that $x_{\ell} \in \left(\frac{x}{2}, \frac{3x}{2}\right)$ for all $\ell \ge N$. Since $\lim_{k \to \infty} \frac{1}{k} + \frac{1}{2^k} = 0$, there exists M > 0 such that $\frac{1}{k} + \frac{1}{2^k} < \frac{x}{2}$ for all $k \ge M$. Therefore,

$$A \cap \left(\frac{x}{2}, \frac{3x}{2}\right) = \bigcup_{k=1}^{M-1} \left(\frac{1}{k} - \frac{1}{2^k}, \frac{1}{k} + \frac{1}{2^k}\right);$$

thus there exists $1 \leq j \leq M - 1$ such that

$$\# \{ \ell \in \mathbb{N} \mid x_{\ell} \in \left(\frac{1}{j} - \frac{1}{2^{j}}, \frac{1}{j} + \frac{1}{2^{j}}\right) = \infty.$$

Let $\{x_{\ell_k}\}_{k=1}^{\infty}$ be a subsequence of $\{x_\ell\}_{\ell=1}^{\infty}$ satisfying that $\{x_{\ell_k}\}_{k=1}^{\infty} \subseteq \left(\frac{1}{j} - \frac{1}{2^j}, \frac{1}{j} + \frac{1}{2^j}\right)$, we conclude that $x \in \left[\frac{1}{j} - \frac{1}{2^j}, \frac{1}{j} + \frac{1}{2^j}\right]$ since $\lim_{k \to \infty} x_{\ell_k} = x$.

Having shown that $\overline{A} = \{0\} \cup \bigcup_{k=N+1}^{\infty} \left[\frac{1}{k} - \frac{1}{2^k}, \frac{1}{k} + \frac{1}{2^k}\right]$, we conclude that

$$\partial A = \bar{A} \backslash \mathring{A} = \bar{A} \backslash A \subseteq \{0\} \cup \left\{ \frac{1}{k} - \frac{1}{2^k} \, \middle| \, k \in \mathbb{N} \right\} \cup \left\{ \frac{1}{k} + \frac{1}{2^k} \, \middle| \, k \in \mathbb{N} \right\};$$

thus ∂A has measure zero. This implies that A has volume.

Problem 4. Prove the following statements.

- 1. The function $f(x) = \sin \frac{1}{x}$ is Riemann integrable on (0, 1).
- 2. Let $f: (0,1] \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} \frac{1}{p} & \text{if } x = \frac{q}{p} \in \mathbb{Q}, (p,q) = 1, \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

Then f is Riemann integrable on (0, 1]. Find $\int_{(0,1]} f(x) dx$ as well.

- 3. Let $A \subseteq \mathbb{R}^n$ be a bounded set, and $f : A \to \mathbb{R}$ is Riemann integrable. Then f^k (f 的 k 次方) is integrable for all $k \in \mathbb{N}$.
- *Proof.* 1. Note that (0, 1) has volume, f is bounded on (0, 1) and f is continuous on (0, 1). Therefore, the Lebesgue Theorem (or its corollary) implies that f is Riemann integrable on (0, 1).
 - 2. In Calculus we have shown that f is continuous on $\mathbb{Q}^{\mathbb{C}} \cap (0, 1]$ so that the collection of discontinuities of $\overline{f}^{(0,1]}$ is $\mathbb{Q} \cap (0,1]$. Since $\mathbb{Q} \cap (0,1]$ is countable, we find that the collection of discontinuities of $\overline{f}^{(0,1]}$ has measure zero. Therefore, f is Riemann integrable on (0,1].

Let \mathcal{P} be a partition of (0, 1]. Then $L(f, \mathcal{P}) = 0$ since

$$\inf_{x \in \Delta} \overline{f}^{(0,1]}(x) = 0 \qquad \forall \Delta \in \mathcal{P}.$$

Therefore, $\int_{A} f(x) dx = 0$; thus the fact that f is Riemann integrable on (0, 1] shows that $\int_{(0,1]} f(x) dx = 0.$

3. First we note that the fact that f is Riemann integrable on A implies that f is bounded on A. Therefore, f^k is bounded on A. Moreover, the Lebesgue Theorem implies that the collection D of discontinuities of \overline{f}^A has measure zero. Since $\overline{f^k}^A = (\overline{f}^A)^k$, we find that the collection of discontinuities of $\overline{f^k}^A$ is exactly D; thus has measure zero. The Lebesgue Theorem then implies that f^k is Riemann integrable on A.

Problem 5. Suppose that $f : [a, b] \to \mathbb{R}$ is Riemann integrable on [a, b], and the set $\{x \in [a, b] \mid f(x) \neq 0\}$ has measure zero. Show that $\int_{a}^{b} f(x) dx = 0$.

Proof. First we note that for each $[c,d] \subseteq [a,b]$, then there exists $x \in [c,d]$ such that f(x) = 0 for otherwise $f(x) \neq 0$ for all $x \in [c,d]$ so that

$$[c,d] \subseteq \left\{ x \in [a,b] \, \middle| \, f(x) \neq 0 \right\}$$

and this implies that [c, d] is a set of measure zero, a contradiction to Corollary 6.25 in the lecture note. Therefore, $L(|f|, \mathcal{P}) \leq 0$ and $U(f, \mathcal{P}) \geq 0$ for all partitions \mathcal{P} of [a, b] which shows that $\int_{a}^{b} f(x) dx \leq 0$ and $\int_{a}^{\bar{b}} f(x) dx \geq 0$. Since f is Riemann integrable on [a, b], we conclude that $\int_{a}^{a} f(x) dx = 0$.

Problem 6. Find an example of the inequality

$$\int_{A} f(x) \, dx + \int_{A} g(x) \, dx < \int_{A} (f+g)(x) \, dx < \int_{A} (f+g)(x) \, dx < \int_{A} f(x) \, dx + \int_{A} g(x) \, dx + \int_{A} g(x) \, dx = \int_{A} (f+g)(x) \, d$$

Solution. Let $f, g: [0, 2] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0, 2], \\ 0 & \text{otherwise}, \end{cases} \quad \text{and} \quad g(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}^{\complement} \cap [0, 1], \\ 0 & \text{otherwise}. \end{cases}$$

Then for A = [0, 2],

$$\int_{\underline{A}} f(x) \, dx = \int_{\underline{A}} g(x) \, dx = 0 \,, \quad \overline{\int}_{\underline{A}} f(x) \, dx = 2 \quad \text{and} \quad \overline{\int}_{\underline{A}} g(x) \, dx = 1 \,.$$

Moreover,

$$(f+g)(x) = \begin{cases} 1 & \text{if } x \in [0,1] \cup (\mathbb{Q} \cap [1,2]), \\ 0 & \text{otherwise.} \end{cases}$$

so that

$$\int_{A} (f+g)(x) \, dx = 1 \qquad \text{and} \qquad \int_{A} (f+g)(x) \, dx = 2 \, .$$

Therefore, f and g satisfy the desired inequality.

Another example is given as follows: let $f, g: [0, 1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0,1], \\ 0 & \text{if } x \in \mathbb{Q}^{\complement} \cap [0,1], \end{cases} \quad \text{and} \quad g(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q} \cap [0,1], \\ 2 & \text{if } x \in \mathbb{Q}^{\complement} \cap [0,1], \end{cases}$$

Then

$$(f+g)(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0,1], \\ 2 & \text{if } x \in \mathbb{Q}^{\complement} \cap [0,1], \end{cases}$$

so that we have
$$\int_{[0,1]} f(x) dx = \int_{[0,1]} g(x) dx = 0$$
, $\overline{\int}_{[0,1]} f(x) dx = \int_{[0,1]} (f+g)(x) dx = 1$, and $\overline{\int}_{[0,1]} g(x) dx = \overline{\int}_{[0,1]} (f+g)(x) dx = 2$.

Problem 7. Let $A \subseteq \mathbb{R}^n$ be a bounded set, and $f : A \to \mathbb{R}$ be a bounded function. Show that if f is Riemann integrable on A, then |f| is also Riemann integrable on A.

- Proof. Method 1: Since f is Rieman integrable on A, the Lebesgue Theorem implies that the collection of discontinuities of \overline{f}^A has measure zero. Note that if \overline{f}^A is continuous at $a \in A$, then $\overline{|f|}^A$ is also continuous at a since $\overline{|f|}^A = |\overline{f}^A|$. Therefore, the collection of discontinuities of $\overline{|f|}^A$ is a subset of a measure zero set, the collection of discontinuities of \overline{f}^A ; thus the collection of discontinuities of discontinuities of $\overline{|f|}^A$ has measure zero. The Lebesgue Theorem then shows that |f| is Riemann integrable on A.
- Method 2: Let $\varepsilon > 0$ be given. Since f is Riemann integrable on A, by Riemann's condition there exists a partition \mathcal{P} of A such that

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) < \varepsilon$$
.

Note that for each $\Delta \in P$,

$$\sup_{x \in \Delta} \left| \overline{f}^{A}(x) \right| - \inf_{x \in \Delta} \left| \overline{f}^{A}(x) \right| \leqslant \sup_{x \in \Delta} \overline{f}^{A}(x) - \inf_{x \in \Delta} \overline{f}^{A}(x) \,;$$

thus

$$U(|f|, \mathcal{P}) - L(|f|, \mathcal{P}) = \sum_{\Delta \in \mathcal{P}} \left(\sup_{x \in \Delta} \left| \overline{f}^{A}(x) \right| - \inf_{x \in \Delta} \left| \overline{f}^{A}(x) \right| \right) \nu(\Delta)$$

$$\leq \sum_{\Delta \in \mathcal{P}} \left(\sup_{x \in \Delta} \overline{f}^{A}(x) - \inf_{x \in \Delta} \overline{f}^{A}(x) \right) \nu(\Delta) = U(f, \mathcal{P}) - L(f, \mathcal{P}) < \varepsilon.$$

By Riemann's condition, we conclude that |f| is Riemann integrable on A.