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Problem 1. Investigate the differentiability of

f(x, y) =

$

&

%

xy
a

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Solution. First we note that

fx(0, 0) = lim
hÑ0

f(h, 0) ´ f(0, 0)

h
= 0 and fy(0, 0) = lim

kÑ0

f(0, k) ´ f(0, 0)

k
= 0 .

For (x, y) ‰ (0, 0),
ˇ

ˇf(x, y) ´ f(0, 0) ´ fx(0, 0)x ´ fy(0, 0)y
ˇ

ˇ

a

x2 + y2
=

xy

x2 + y2

whose limit, as (x, y) Ñ (0, 0), does not exist. Therefore, f is not differentiable at (0, 0).
On the other hand, for (x, y) ‰ (0, 0),

fx(x, y) =

y
a

x2 + y2 ´
x2y

a

x2 + y2

x2 + y2
=

y3

(x2 + y2)
3
2

and similarly, fy(x, y) =
x3

(x2 + y2)
3
2

. Clearly fx and fy are continuous on R2zt(0, 0)u; thus f is

differentiable on R2zt(0, 0)u. ˝

Problem 2. Investigate the differentiability of

f(x, y) =

# xy

x+ y2
if x+ y2 ‰ 0 ,

0 if x+ y2 = 0 .

Solution. For x+ y2 ‰ 0,

fx(x, y) =
y(x+ y2) ´ xy

(x+ y2)2
=

y3

(x+ y2)2
and fy(x, y) =

x(x+ y2) ´ 2xy2

(x+ y2)2
=

x2 ´ xy2

(x+ y2)2
.

Clearly fx and fy are continuous on R2z
␣

(x, y)|x + y2 = 0
(

; thus f is differentiable at point (x, y)

satisfying x+ y2 ‰ 0 (by Theorem 5.40 in the lecture note).
Now we consider the differentiability of f at (a, b) when a+ b2 = 0. First we note that

fx(a, b) = lim
hÑ0

f(a+ h, b) ´ f(a, b)

h
= lim

hÑ0

(a+ h)b

h(a+ h+ b2)
=

"

0 (a, b) = (0, 0) ,

D.N.E. (a, b) ‰ (0, 0) ;

thus f is not differentiable at (a, b) if a+ b2 = 0 and (a, b) ‰ (0, 0) (because of Theorem 5.27 in the
lecture note).



Finally we justify the differentiability of f at (0, 0). Note that

fy(0, 0) = lim
kÑ0

f(0, k) ´ f(0, 0)

k
= 0 .

For x = y2 with y ‰ 0, we have
ˇ

ˇf(x, y) ´ f(0, 0) ´ fx(0, 0)x ´ fy(0, 0)y
ˇ

ˇ

a

x2 + y2
=

|y3|

2y2
a

y4 + y2
=

1

2
a

y2 + 1

whose limit, as y Ñ 0, cannot be zero; thus

lim
(x,y)Ñ(0,0)

ˇ

ˇf(x, y) ´ f(0, 0) ´ fx(0, 0)x ´ fy(0, 0)y
ˇ

ˇ

a

x2 + y2
‰ 0 .

Therefore, f is not differentiable at (0, 0). ˝

Problem 3. Define f : R2 Ñ R by

f(x, y) =

$

&

%

(x2 + y2) sin 1
a

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Discuss the differentiability of f . Find (∇f)(x, y) at points of differentiability.

Solution. If (x, y) ‰ (0, 0), then

fx(x, y) = 2x sin 1
a

x2 + y2
+ (x2 + y2) cos 1

a

x2 + y2
¨

´x

(x2 + y2)
3
2

= 2x sin 1
a

x2 + y2
´

1
a

x2 + y2
cos 1

a

x2 + y2

and similarly,
fy(x, y) = 2y sin 1

a

x2 + y2
´

1
a

x2 + y2
cos 1

a

x2 + y2
.

Clearly fx and fy are continuous on R2zt(0, 0)u; thus f is differentiable at point (x, y) ‰ (0, 0) (by
Theorem 5.40 in the lecture note).

Now we justify the differentiability of f at (0, 0). First we compute fx(0, 0) and fy(0, 0) and find
that

fx(0, 0) = lim
hÑ0

f(h, 0) ´ f(0, 0)

h
= lim

hÑ0
h sin 1

|h|
= 0

and
fy(0, 0) = lim

kÑ0

f(0, k) ´ f(0, 0)

k
= lim

kÑ0
k sin 1

|k|
= 0 ,

where the limits above are obtained by the Sandwich Lemma. For (x, y) ‰ (0, 0), we have
ˇ

ˇf(x, y) ´ f(0, 0) ´ 0 ¨ (x ´ 0) ´ 0 ¨ (y ´ 0)
ˇ

ˇ

a

x2 + y2
=
a

x2 + y2 sin 1
a

x2 + y2
ď
a

x2 + y2 ;

thus the Sandwich Lemma implies that

lim
(x,y)Ñ(0,0)

ˇ

ˇf(x, y) ´ f(0, 0) ´ 0 ¨ (x ´ 0) ´ 0 ¨ (y ´ 0)
ˇ

ˇ

a

x2 + y2
= 0 .

Therefore, f is also differentiable at (0, 0); thus f is differentiable on R2. ˝



Problem 4. Let X = Mnˆm, the collection of all nˆm real matrices, equipped with the Frobenius
norm } ¨ }F introduced in Problem 5 of Exercise 6, and f : X Ñ R be defined by f(A) = }A}2F . Show
that f is differentiable on X and find (Df)(A) for A P X.

Proof. First we note that f(A) = tr(AAT), where tr(M) denotes the trace of M is M is a square
matrix. Let A = [aij] P X. Then for δA P X, we have

f(A+ δA) ´ f(A) = tr
[
(A+ δA)(A+ δA)T] ´ tr(AAT)

= tr
(
AAT + AδAT + δAAT + δAδAT) ´ tr(AAT)

= tr(AδAT) + tr(δAAT) + tr(δAδAT) .

Define LA : X Ñ R by L(B) = tr(ABT) + tr(BAT). Then Problem 2 of Exercise 13 shows that
L P B(X,R). Therefore, by the fact that

lim
δAÑ0

ˇ

ˇf(A+ δA) ´ f(A) ´ LA(δA)
ˇ

ˇ

}δA}F
= lim

δAÑ0

ˇ

ˇtr(δAδAT)
ˇ

ˇ

}δA}F
= lim

δAÑ0

}δA}2F

}δA}F
= lim

δAÑ0
}δA}F = 0 ,

we conclude that f is differentiable at A and (Df)(A) = LA. ˝

Problem 5. Let } ¨ }F denote the Frobenius norm of matrices given in Problem 5 of Exercise 6. For
an m ˆ n matrix A = [aij], we look for an m ˆ k matrix C = [cij] and an k ˆ n matrix R = [rij],
where 1 ď k ď mintm,nu, such that }A ´ CR}2F is minimized. This is to minimize the function

f(C,R) = }A ´ CR}2F = tr((A ´ CR)(A ´ CR)T) =
n
ÿ

i=1

m
ÿ

j=1

(
aij ´

k
ÿ

ℓ=1

ciℓrℓj
)2

.

Show that if C P Rmˆk and R P Rkˆn minimize f , then C,R satisfy

(A ´ CR)RT = 0 and CT(A ´ CR) = 0 .

Proof. Since

f(C,R) = tr((A ´ CR)(AT ´ RTCT))

= tr(AAT) ´ tr(CRAT) ´ tr(ARTCT) + tr(CRRTCT)

= tr(AAT) ´ 2tr(ARTCT) + tr(CRRTCT) ,

we find that

(Df)(C,R)(δC, δR) = ´2tr(ART(δC)T) + tr((δC)RRTCT) + tr(CRRT(δC)T)

´ 2tr(A(δR)TCT) + tr(C(δR)RTCT) + tr(CR(δR)TCT)

= ´2tr(ART(δC)T) + 2tr(CRRT(δC)T)

´ 2tr(A(δR)TCT) + 2tr(CR(δR)TCT)

= ´2tr((A ´ CR)RT(δC)T) ´ 2tr((A ´ CR)(δR)TCT)

= ´2tr((A ´ CR)RT(δC)T) ´ 2tr(CT(A ´ CR)(δR)T) ,

where we have used that tr(PQ) = tr(QP ) to obtain the last equality. By the fact that tr(PQ) = 0

for all Q if and only if P = 0, we conclude that if C,R minimize f , then it holds the desired identity.
˝



Alternative proof. If f attains its minimum at C = [cij] and R = [rij], then

Bf

Bcpq
(C,R) = 2

n
ÿ

i=1

m
ÿ

j=1

[(
aij ´

k
ÿ

ℓ=1

ciℓrℓj
) k
ÿ

s=1

δipδsqrsj

]
= 0 ,

Bf

Brpq
(C,R) = 2

n
ÿ

i=1

m
ÿ

j=1

[(
aij ´

k
ÿ

ℓ=1

ciℓrℓj
) k
ÿ

s=1

δspδjqcis

]
= 0 ,

where δ¨¨ is the Kronecker delta. Therefore, for all p, q,

m
ÿ

j=1

(
apj ´

k
ÿ

ℓ=1

cpℓrℓj
)
rqj =

n
ÿ

i=1

(
aiq ´

k
ÿ

ℓ=1

ciℓrℓq
)
cip = 0

which implies desired identity. ˝

Problem 6. Let X = B(Rn,Rn) equipped with norm } ¨ }, and f : GL(n) Ñ B(Rn,Rn) be defined
by f(L) = L´2 ” L´1 ˝L´1. Show that f is differentiable on GL(n) and find (Df)(L) for L P GL(n).

Proof. Let L P GL(n). By the fact that

K´1 ´ L´1 = ´K´1(K ´ L)L´1 and K´2 ´ L´2 = ´K´2(K ´ L)L´1 ´ K´1(K ´ L)L´2 ,

we have

K´2 ´ L´2 = ´
[
L´2 ´ K´2(K ´ L)L´1 ´ K´1(K ´ L)L´2

]
(K ´ L)L´1

´
[
L´1 ´ K´1(K ´ L)L´1

]
(K ´ L)L´2

= ´L´2(K ´ L)L´1 ´ L´1(K ´ L)L´2 +K´2(K ´ L)L´1(K ´ L)L´1

+K´1(K ´ L)L´2(K ´ L)L´1 +K´1(K ´ L)L´1(K ´ L)L´2 ;

thus
}K´2 ´ L´2 + L´2(K ´ L)L´1 + L´1(K ´ L)L´2}

ď

[
}K´2}}L´1}2 + 2}K´1}}L´1}}L´2}

]
}K ´ L}2 .

(‹)

This motivates us to define (Df)(L) P B(X,X) by

(Df)(L)(H) = ´L´2HL´1 ´ L´1HL´2 @H P X , (˛)

and (‹) implies that

lim
KÑL

}f(K) ´ f(L) ´ (Df)(L)(K ´ L)}

}K ´ L}
= 0 .

Therefore, f is differentiable on GL(n), and (Df)(L) is given by (˛). ˝

Problem 7. Let X = C ([´, 1, 1];R) and } ¨ }X be defined by }f}X = max
xP[´1,1]

ˇ

ˇf(x)
ˇ

ˇ, and (Y, } ¨ }Y ) =

(R, | ¨ |). Consider the map δ : X Ñ R be defined by δ(f) = f(0). Show that δ is differentiable on X.
Find (Dδ)(f) (for f P C ([´1, 1];R)).



Proof. Let f P X be given. For h P X, we have

δ(f + h) ´ δf =
(
f(0) + h(0)

)
´ f(0) = h(0) = δh ;

thus we expect that (Dδ)(f)(h) = δh. We first show that δ P B(X,R).

1. For linearity, for h1, h2 P X and c P R, we have

δ(ch1 + h2) =
(
ch1 + h2

)
(0) = ch1(0) + h2(0) = cδh1 + δh2 .

2. For boundedness, if }h}X = 1, then max
xP[´1,1]

ˇ

ˇh(x)
ˇ

ˇ = 1 so that

|δh| =
ˇ

ˇh(0)
ˇ

ˇ ď max
xP[´1,1]

ˇ

ˇh(x)
ˇ

ˇ = 1 ă 8 .

Having established that δ P B(X,R), we note that

lim
hÑ0

ˇ

ˇδ(f + h) ´ δf ´ δh
ˇ

ˇ

}h}X
= lim

hÑ0

0

}h}X
= 0 ;

thus δ is differentiable at f (for all f P X), and (Dδ)(f) = δ for all f P X. ˝

Problem 8. Let X = C ([a, b];R) and } ¨ }2 be the norm induced by the inner product xf, gy =
ż b

a
f(x)g(x) dx. Define I : X Ñ X by

I(f)(x) =

ż x

a

f(t)2 dt @x P [a, b] .

Show that I is differentiable on X, and find (DI)(f).

Proof. Let f P X be given. For h P X,

I(f + h)(x) ´ I(f)(x) =

ż x

a

(
f(t) + h(t)

)2
dt ´

ż x

a

f(t)2 dt =

ż x

a

[
2f(t)h(t) + h(t)2

]
dt ; (‹‹)

thus we expect that
(DI)(f)(h)(x) = 2

ż x

a

f(t)h(t) dt . (˛˛)

Define L by (Lh)(x) = 2
ż x

a
f(t)h(t) dt.

Claim: L P B(X,X).

1. For linearity, let h1, h2 P X and c P R. Then

L(ch1 + h2)(x) = 2

ż x

a

f(t)
(
ch1(t) + h2(t)

)
dt = 2c

ż x

a

f(t)h1(t) dt+ 2

ż x

a

f(t)h2(t) dt

which shows that L(ch1 + h2) = cL(h1) + L(h2).



2. Note that by the Cauchy-Schwarz inequality,
ˇ

ˇ

ˇ

ż x

a

f(t)h(t) dt
ˇ

ˇ

ˇ
ď

ż b

a

|f(t)||h(t)| dt ď }f}2}h}2 ;

thus for }h}2 = 1,

}L(h)}2 =
[ ż b

a

( ż x

a

f(t)h(t) dt
)2

dx
] 1

2
ď

( ż b

a

}f}22}h}22 dx
) 1

2
ď

?
b ´ a}f}2 .

Therefore,
}L} = sup

}h}2=1

}L(h)}2 ď
?
b ´ a}f}2 ă 8

which shows that L is bounded.

Finally, using (‹‹) we obtain that
›

›I(f + h) ´ I(f) ´ L(h)
›

›

2
=

[ ż b

a

( ż x

a

h(t)2 dt
)2

dx
] 1

2
ď

[ ż b

a

( ż b

a

h(t)2 dt
)2

dx
] 1

2

=
[ ż b

a

}h}42 dx
] 1

2
=

?
b ´ a}h}22 ;

thus
lim
hÑ0

›

›I(f + h) ´ I(f) ´ (DI)(f)(h)
›

›

2

}h}2
= 0 .

Therefore, I is differentiable at f for all f P X and (DI)(f) is given by (˛˛). ˝

Problem 9. Let r ą 0 and α ą 1. Suppose that f : B(0, r) Ñ R satisfies |f(x)| ď }x}α for all
x P B(0, r). Show that f is differentiable at 0. What happens if α = 1?

Problem 10. Suppose that f, g : R Ñ Rm are differentiable at a and there is a δ ą 0 such that
g(x) ‰ 0 for all 0 ă |x ´ a| ă δ. If f(a) = g(a) = 0 and (Dg)(a) ‰ 0, show that

lim
xÑa

}f(x)}

}g(x)}
=

}(Df)(a)}

}(Dg)(a)}
.

Problem 11. Let U Ď Rn be open, and f : U Ñ R. Suppose that the partial derivatives
Bf

Bx1
, ¨ ¨ ¨ ,

Bf

Bxn
are bounded on U ; that is, there exists a real number M ą 0 such that

ˇ

ˇ

ˇ

Bf

Bxj
(x)

ˇ

ˇ

ˇ
ď M @x P U and j = 1, ¨ ¨ ¨ , n .

Show that f is continuous on U .
Hint: Mimic the proof of Theorem 5.40 in the lecture note.

Proof. Assume that
ˇ

ˇ

ˇ

Bf

Bxi
(x)

ˇ

ˇ

ˇ
ď M for all x P U and 1 ď i ď n. Let a P U be given. Then there

exists r ą 0 such that B(a, r) Ď U . For x P B(a, r), let k = x ´ a. Then
ˇ

ˇf(x) ´ f(a)
ˇ

ˇ =
ˇ

ˇf(a1 + k1, a2 + k2, ¨ ¨ ¨ , an + kn) ´ f(a1, a2, ¨ ¨ ¨ , an)
ˇ

ˇ

=
ˇ

ˇ

ˇ

n
ÿ

j=1

[
f(a1, ¨ ¨ ¨ , aj´1, aj + kj, ¨ ¨ ¨ , an + kn) ´ f(a1, ¨ ¨ ¨ , aj, aj+1 + kj+1, ¨ ¨ ¨ , an + kn)

]ˇ
ˇ

ˇ

ď

n
ÿ

j=1

ˇ

ˇ

ˇ
f(a1, ¨ ¨ ¨ , aj´1, aj + kj, ¨ ¨ ¨ , an + kn) ´ f(a1, ¨ ¨ ¨ , aj, aj+1 + kj+1, ¨ ¨ ¨ , an + kn)

ˇ

ˇ

ˇ
.



By the Mean Value Theorem, for each 1 ď j ď n there exists θj P (0, 1) such that
ˇ

ˇf(a1, ¨ ¨ ¨ , aj´1, aj + kj, ¨ ¨ ¨ , an + kn) ´ f(a1, ¨ ¨ ¨ , aj, aj+1 + kj+1, ¨ ¨ ¨ , an + kn)

=
Bf

Bxj
(a1, ¨ ¨ ¨ , aj´1, aj + θjkj, aj+1 + kj+1, ¨ ¨ ¨ , an + kn)kj ;

thus
ˇ

ˇf(a1, ¨ ¨ ¨ , aj´1, aj + kj, ¨ ¨ ¨ , an + kn) ´ f(a1, ¨ ¨ ¨ , aj, aj+1 + kj+1, ¨ ¨ ¨ , an + kn)
ˇ

ˇ ď M |kj| .

Therefore, if x P B(a, r),

ˇ

ˇf(x) ´ f(a)
ˇ

ˇ =
n
ÿ

j=1

M |kj| ď M
?
n
( n
ÿ

j=1

|kj|
2
) 1

2
=

?
nM}x ´ a}Rn .

This shows that f is continuous at a. ˝

Problem 12. Let U Ď Rn be open, and f : U Ñ R. Show that f is differentiable at a P U if and
only if there exists a vector-valued function ε : U Ñ Rn such that

f(x) ´ f(a) ´

n
ÿ

j=1

Bf

Bxj
(a)(xj ´ aj) = ε(x) ¨ (x ´ a)

and ε(x) Ñ 0 as x Ñ a.

Proof. “ñ” Suppose that f is differentiable at a. Define ε : U Ñ Rn by

ε(x) =

$

&

%

[
f(x) ´ f(a) ´

n
ř

j=1

Bf

Bxj
(a)(xj ´ aj)

]
x ´ a

}x ´ a}2
if x ‰ a ,

0 if x = a .

Then for x ‰ a,

ˇ

ˇε(x)
ˇ

ˇ ď

ˇ

ˇ

ˇ
f(x) ´ f(a) ´

n
ř

j=1

Bf

Bxj
(a)(xj ´ aj)

ˇ

ˇ

ˇ

}x ´ a}

which, by the differentiability of f at a, implies that

lim
xÑa

ˇ

ˇε(x)
ˇ

ˇ = 0 .

Moreover,

ε(x) ¨ (x ´ a) = f(x) ´ f(a) ´

n
ÿ

j=1

Bf

Bxj
(a)(xj ´ aj) .

“ð” Suppose that there exists a vector-valued function ε : U Ñ Rn such that

f(x) ´ f(a) ´

n
ÿ

j=1

Bf

Bxj
(a)(xj ´ aj) = ε(x) ¨ (x ´ a)



and ε(x) Ñ 0 as x Ñ a. Then for x ‰ a, the Cauchy-Schwarz inequality implies that
ˇ

ˇ

ˇ
f(x) ´ f(a) ´

n
ř

j=1

Bf

Bxj
(a)(xj ´ aj)

ˇ

ˇ

ˇ

}x ´ a}
=

|ε(x) ¨ (x ´ a)|

}x ´ a}
ď }ε(x)} ;

thus

lim
xÑa

ˇ

ˇ

ˇ
f(x) ´ f(a) ´

n
ř

j=1

Bf

Bxj
(a)(xj ´ aj)

ˇ

ˇ

ˇ

}x ´ a}
= 0 .

Therefore, f is differentiable at a with [(Df)(a)] =
[

Bf

Bx1
(a), ¨ ¨ ¨ ,

Bf

Bxn
(a)

]
. ˝

Problem 13. Let

f(x, y) =

$

&

%

x3y

x4 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

and u P R2 be a unit vector. Show that the directional derivative of f at the origin exists in all
direction, and

(Duf)(0, 0) =
(

Bf

Bx
(0, 0),

Bf

By
(0, 0)

)
¨ u .

Is f differentiable at (0, 0)?

Solution. Let u = (cos θ, sin θ) be a unit vector. Then the directional derivative of f at (0, 0) in
direction u is

(Duf)(0, 0) = lim
tÑ0+

f(t cos θ, t sin θ) ´ f(0, 0)

t
= lim

tÑ0+

t4 cos3 θ sin θ

t(t4 cos4 θ + t2 sin2 θ)

= lim
tÑ0+

t cos3 θ sin θ

t2 cos4 θ + sin2 θ
= 0 .

On the other hand,

fx(0, 0) = lim
hÑ0

f(h, 0) ´ f(0, 0)

h
= 0 and fy(0, 0) = lim

kÑ0

f(0, k) ´ f(0, 0)

k
= 0 ;

thus we conclude that (Duf)(0, 0) =
(
fx(0, 0), fy(0, 0)

)
¨ u.

Since fx(0, 0) = fy(0, 0) = 0, if f is differentiable at (0, 0), we must have

lim
(x,y)Ñ(0,0)

ˇ

ˇf(x, y) ´ f(0, 0) ´ 0 ¨ (x ´ 0) ´ 0 ¨ (y ´ 0)
ˇ

ˇ

a

x2 + y2
= lim

(x,y)Ñ(0,0)

|x3y|
a

x2 + y2(x4 + y2)
= 0 ;

however, by passing to the limit as (x, y) Ñ (0, 0) along the curve y = x2, we find that

0 = lim
xÑ0

|x3 ¨ x2|
?
x2 + x4(x4 + x4)

= lim
xÑ0

1

2
?
1 + x2

=
1

2
,

a contradiction. Therefore, f is not differentiable at (0, 0). ˝


