Exercise Problem Sets 14

Dec. 24. 2021

Problem 1. Investigate the differentiability of

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x y}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

Solution. First we note that

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=0 \quad \text { and } \quad f_{y}(0,0)=\lim _{k \rightarrow 0} \frac{f(0, k)-f(0,0)}{k}=0 .
$$

For $(x, y) \neq(0,0)$,

$$
\frac{\left|f(x, y)-f(0,0)-f_{x}(0,0) x-f_{y}(0,0) y\right|}{\sqrt{x^{2}+y^{2}}}=\frac{x y}{x^{2}+y^{2}}
$$

whose limit, as $(x, y) \rightarrow(0,0)$, does not exist. Therefore, f is not differentiable at $(0,0)$.
On the other hand, for $(x, y) \neq(0,0)$,

$$
f_{x}(x, y)=\frac{y \sqrt{x^{2}+y^{2}}-\frac{x^{2} y}{\sqrt{x^{2}+y^{2}}}}{x^{2}+y^{2}}=\frac{y^{3}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}
$$

and similarly, $f_{y}(x, y)=\frac{x^{3}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}$. Clearly f_{x} and f_{y} are continuous on $\mathbb{R}^{2} \backslash\{(0,0)\}$; thus f is differentiable on $\mathbb{R}^{2} \backslash\{(0,0)\}$.

Problem 2. Investigate the differentiability of

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x y}{x+y^{2}} & \text { if } x+y^{2} \neq 0 \\
0 & \text { if } x+y^{2}=0 .
\end{array}\right.
$$

Solution. For $x+y^{2} \neq 0$,

$$
f_{x}(x, y)=\frac{y\left(x+y^{2}\right)-x y}{\left(x+y^{2}\right)^{2}}=\frac{y^{3}}{\left(x+y^{2}\right)^{2}} \quad \text { and } \quad f_{y}(x, y)=\frac{x\left(x+y^{2}\right)-2 x y^{2}}{\left(x+y^{2}\right)^{2}}=\frac{x^{2}-x y^{2}}{\left(x+y^{2}\right)^{2}} .
$$

Clearly f_{x} and f_{y} are continuous on $\mathbb{R}^{2} \backslash\left\{(x, y) \mid x+y^{2}=0\right\}$; thus f is differentiable at point (x, y) satisfying $x+y^{2} \neq 0$ (by Theorem 5.40 in the lecture note).

Now we consider the differentiability of f at (a, b) when $a+b^{2}=0$. First we note that

$$
f_{x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}=\lim _{h \rightarrow 0} \frac{(a+h) b}{h\left(a+h+b^{2}\right)}=\left\{\begin{array}{cl}
0 & (a, b)=(0,0), \\
\text { D.N.E. } & (a, b) \neq(0,0)
\end{array}\right.
$$

thus f is not differentiable at (a, b) if $a+b^{2}=0$ and $(a, b) \neq(0,0)$ (because of Theorem 5.27 in the lecture note).

Finally we justify the differentiability of f at $(0,0)$. Note that

$$
f_{y}(0,0)=\lim _{k \rightarrow 0} \frac{f(0, k)-f(0,0)}{k}=0 .
$$

For $x=y^{2}$ with $y \neq 0$, we have

$$
\frac{\left|f(x, y)-f(0,0)-f_{x}(0,0) x-f_{y}(0,0) y\right|}{\sqrt{x^{2}+y^{2}}}=\frac{\left|y^{3}\right|}{2 y^{2} \sqrt{y^{4}+y^{2}}}=\frac{1}{2 \sqrt{y^{2}+1}}
$$

whose limit, as $y \rightarrow 0$, cannot be zero; thus

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\left|f(x, y)-f(0,0)-f_{x}(0,0) x-f_{y}(0,0) y\right|}{\sqrt{x^{2}+y^{2}}} \neq 0
$$

Therefore, f is not differentiable at $(0,0)$.
Problem 3. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)=\left\{\begin{array}{cl}
\left(x^{2}+y^{2}\right) \sin \frac{1}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

Discuss the differentiability of f. Find $(\nabla f)(x, y)$ at points of differentiability.
Solution. If $(x, y) \neq(0,0)$, then

$$
\begin{aligned}
f_{x}(x, y) & =2 x \sin \frac{1}{\sqrt{x^{2}+y^{2}}}+\left(x^{2}+y^{2}\right) \cos \frac{1}{\sqrt{x^{2}+y^{2}}} \cdot \frac{-x}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}} \\
& =2 x \sin \frac{1}{\sqrt{x^{2}+y^{2}}}-\frac{1}{\sqrt{x^{2}+y^{2}}} \cos \frac{1}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

and similarly,

$$
f_{y}(x, y)=2 y \sin \frac{1}{\sqrt{x^{2}+y^{2}}}-\frac{1}{\sqrt{x^{2}+y^{2}}} \cos \frac{1}{\sqrt{x^{2}+y^{2}}}
$$

Clearly f_{x} and f_{y} are continuous on $\mathbb{R}^{2} \backslash\{(0,0)\}$; thus f is differentiable at point $(x, y) \neq(0,0)$ (by Theorem 5.40 in the lecture note).

Now we justify the differentiability of f at $(0,0)$. First we compute $f_{x}(0,0)$ and $f_{y}(0,0)$ and find that

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} h \sin \frac{1}{|h|}=0
$$

and

$$
f_{y}(0,0)=\lim _{k \rightarrow 0} \frac{f(0, k)-f(0,0)}{k}=\lim _{k \rightarrow 0} k \sin \frac{1}{|k|}=0
$$

where the limits above are obtained by the Sandwich Lemma. For $(x, y) \neq(0,0)$, we have

$$
\frac{|f(x, y)-f(0,0)-0 \cdot(x-0)-0 \cdot(y-0)|}{\sqrt{x^{2}+y^{2}}}=\sqrt{x^{2}+y^{2}} \sin \frac{1}{\sqrt{x^{2}+y^{2}}} \leqslant \sqrt{x^{2}+y^{2}}
$$

thus the Sandwich Lemma implies that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{|f(x, y)-f(0,0)-0 \cdot(x-0)-0 \cdot(y-0)|}{\sqrt{x^{2}+y^{2}}}=0 .
$$

Therefore, f is also differentiable at $(0,0)$; thus f is differentiable on \mathbb{R}^{2}.

Problem 4. Let $X=\mathcal{M}_{n \times m}$, the collection of all $n \times m$ real matrices, equipped with the Frobenius norm $\|\cdot\|_{F}$ introduced in Problem 5 of Exercise 6, and $f: X \rightarrow \mathbb{R}$ be defined by $f(A)=\|A\|_{F}^{2}$. Show that f is differentiable on X and find $(D f)(A)$ for $A \in X$.

Proof. First we note that $f(A)=\operatorname{tr}\left(A A^{\mathrm{T}}\right)$, where $\operatorname{tr}(M)$ denotes the trace of M is M is a square matrix. Let $A=\left[a_{i j}\right] \in X$. Then for $\delta A \in X$, we have

$$
\begin{aligned}
f(A+\delta A)-f(A) & =\operatorname{tr}\left[(A+\delta A)(A+\delta A)^{\mathrm{T}}\right]-\operatorname{tr}\left(A A^{\mathrm{T}}\right) \\
& =\operatorname{tr}\left(A A^{\mathrm{T}}+A \delta A^{\mathrm{T}}+\delta A A^{\mathrm{T}}+\delta A \delta A^{\mathrm{T}}\right)-\operatorname{tr}\left(A A^{\mathrm{T}}\right) \\
& =\operatorname{tr}\left(A \delta A^{\mathrm{T}}\right)+\operatorname{tr}\left(\delta A A^{\mathrm{T}}\right)+\operatorname{tr}\left(\delta A \delta A^{\mathrm{T}}\right) .
\end{aligned}
$$

Define $L_{A}: X \rightarrow \mathbb{R}$ by $L(B)=\operatorname{tr}\left(A B^{\mathrm{T}}\right)+\operatorname{tr}\left(B A^{\mathrm{T}}\right)$. Then Problem 2 of Exercise 13 shows that $L \in \mathscr{B}(X, \mathbb{R})$. Therefore, by the fact that

$$
\lim _{\delta A \rightarrow 0} \frac{\left|f(A+\delta A)-f(A)-L_{A}(\delta A)\right|}{\|\delta A\|_{F}}=\lim _{\delta A \rightarrow 0} \frac{\left|\operatorname{tr}\left(\delta A \delta A^{\mathrm{T}}\right)\right|}{\|\delta A\|_{F}}=\lim _{\delta A \rightarrow 0} \frac{\|\delta A\|_{F}^{2}}{\|\delta A\|_{F}}=\lim _{\delta A \rightarrow 0}\|\delta A\|_{F}=0
$$

we conclude that f is differentiable at A and $(D f)(A)=L_{A}$.
Problem 5. Let $\|\cdot\|_{F}$ denote the Frobenius norm of matrices given in Problem 5 of Exercise 6. For an $m \times n$ matrix $A=\left[a_{i j}\right]$, we look for an $m \times k$ matrix $C=\left[c_{i j}\right]$ and an $k \times n$ matrix $R=\left[r_{i j}\right]$, where $1 \leqslant k \leqslant \min \{m, n\}$, such that $\|A-C R\|_{F}^{2}$ is minimized. This is to minimize the function

$$
f(C, R)=\|A-C R\|_{F}^{2}=\operatorname{tr}\left((A-C R)(A-C R)^{\mathrm{T}}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(a_{i j}-\sum_{\ell=1}^{k} c_{i \ell} r_{\ell j}\right)^{2} .
$$

Show that if $C \in \mathbb{R}^{m \times k}$ and $R \in \mathbb{R}^{k \times n}$ minimize f, then C, R satisfy

$$
(A-C R) R^{\mathrm{T}}=0 \quad \text { and } \quad C^{\mathrm{T}}(A-C R)=0 .
$$

Proof. Since

$$
\begin{aligned}
f(C, R) & =\operatorname{tr}\left((A-C R)\left(A^{\mathrm{T}}-R^{\mathrm{T}} C^{\mathrm{T}}\right)\right) \\
& =\operatorname{tr}\left(A A^{\mathrm{T}}\right)-\operatorname{tr}\left(C R A^{\mathrm{T}}\right)-\operatorname{tr}\left(A R^{\mathrm{T}} C^{\mathrm{T}}\right)+\operatorname{tr}\left(C R R^{\mathrm{T}} C^{\mathrm{T}}\right) \\
& =\operatorname{tr}\left(A A^{\mathrm{T}}\right)-2 \operatorname{tr}\left(A R^{\mathrm{T}} C^{\mathrm{T}}\right)+\operatorname{tr}\left(C R R^{\mathrm{T}} C^{\mathrm{T}}\right),
\end{aligned}
$$

we find that

$$
\begin{aligned}
(D f)(C, R)(\delta C, \delta R)= & -2 \operatorname{tr}\left(A R^{\mathrm{T}}(\delta C)^{\mathrm{T}}\right)+\operatorname{tr}\left((\delta C) R R^{\mathrm{T}} C^{\mathrm{T}}\right)+\operatorname{tr}\left(C R R^{\mathrm{T}}(\delta C)^{\mathrm{T}}\right) \\
& -2 \operatorname{tr}\left(A(\delta R)^{\mathrm{T}} C^{\mathrm{T}}\right)+\operatorname{tr}\left(C(\delta R) R^{\mathrm{T}} C^{\mathrm{T}}\right)+\operatorname{tr}\left(C R(\delta R)^{\mathrm{T}} C^{\mathrm{T}}\right) \\
= & -2 \operatorname{tr}\left(A R^{\mathrm{T}}(\delta C)^{\mathrm{T}}\right)+2 \operatorname{tr}\left(C R R^{\mathrm{T}}(\delta C)^{\mathrm{T}}\right) \\
& -2 \operatorname{tr}\left(A(\delta R)^{\mathrm{T}} C^{\mathrm{T}}\right)+2 \operatorname{tr}\left(C R(\delta R)^{\mathrm{T}} C^{\mathrm{T}}\right) \\
= & -2 \operatorname{tr}\left((A-C R) R^{\mathrm{T}}(\delta C)^{\mathrm{T}}\right)-2 \operatorname{tr}\left((A-C R)(\delta R)^{\mathrm{T}} C^{\mathrm{T}}\right) \\
= & -2 \operatorname{tr}\left((A-C R) R^{\mathrm{T}}(\delta C)^{\mathrm{T}}\right)-2 \operatorname{tr}\left(C^{\mathrm{T}}(A-C R)(\delta R)^{\mathrm{T}}\right),
\end{aligned}
$$

where we have used that $\operatorname{tr}(P Q)=\operatorname{tr}(Q P)$ to obtain the last equality. By the fact that $\operatorname{tr}(P Q)=0$ for all Q if and only if $P=0$, we conclude that if C, R minimize f, then it holds the desired identity.

Alternative proof. If f attains its minimum at $C=\left[c_{i j}\right]$ and $R=\left[r_{i j}\right]$, then

$$
\begin{aligned}
& \frac{\partial f}{\partial c_{p q}}(C, R)=2 \sum_{i=1}^{n} \sum_{j=1}^{m}\left[\left(a_{i j}-\sum_{\ell=1}^{k} c_{i \ell} r_{\ell j}\right) \sum_{s=1}^{k} \delta_{i p} \delta_{s q} r_{s j}\right]=0, \\
& \frac{\partial f}{\partial r_{p q}}(C, R)=2 \sum_{i=1}^{n} \sum_{j=1}^{m}\left[\left(a_{i j}-\sum_{\ell=1}^{k} c_{i \ell} r_{\ell j}\right) \sum_{s=1}^{k} \delta_{s p} \delta_{j q} c_{i s}\right]=0,
\end{aligned}
$$

where δ.. is the Kronecker delta. Therefore, for all p, q,

$$
\sum_{j=1}^{m}\left(a_{p j}-\sum_{\ell=1}^{k} c_{p \ell} r_{\ell j}\right) r_{q j}=\sum_{i=1}^{n}\left(a_{i q}-\sum_{\ell=1}^{k} c_{i \ell} r_{\ell q}\right) c_{i p}=0
$$

which implies desired identity.
Problem 6. Let $X=\mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ equipped with norm $\|\cdot\|$, and $f: \operatorname{GL}(n) \rightarrow \mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ be defined by $f(L)=L^{-2} \equiv L^{-1} \circ L^{-1}$. Show that f is differentiable on GL (n) and find $(D f)(L)$ for $L \in \operatorname{GL}(n)$.

Proof. Let $L \in \operatorname{GL}(n)$. By the fact that

$$
K^{-1}-L^{-1}=-K^{-1}(K-L) L^{-1} \text { and } K^{-2}-L^{-2}=-K^{-2}(K-L) L^{-1}-K^{-1}(K-L) L^{-2},
$$

we have

$$
\begin{aligned}
K^{-2}-L^{-2}= & -\left[L^{-2}-K^{-2}(K-L) L^{-1}-K^{-1}(K-L) L^{-2}\right](K-L) L^{-1} \\
& -\left[L^{-1}-K^{-1}(K-L) L^{-1}\right](K-L) L^{-2} \\
= & -L^{-2}(K-L) L^{-1}-L^{-1}(K-L) L^{-2}+K^{-2}(K-L) L^{-1}(K-L) L^{-1} \\
& +K^{-1}(K-L) L^{-2}(K-L) L^{-1}+K^{-1}(K-L) L^{-1}(K-L) L^{-2} ;
\end{aligned}
$$

thus

$$
\begin{align*}
& \left\|K^{-2}-L^{-2}+L^{-2}(K-L) L^{-1}+L^{-1}(K-L) L^{-2}\right\| \\
& \quad \leqslant\left[\left\|K^{-2}\right\|\left\|L^{-1}\right\|^{2}+2\left\|K^{-1}\right\|\left\|L^{-1}\right\|\left\|L^{-2}\right\|\right]\|K-L\|^{2} .
\end{align*}
$$

This motivates us to define $(D f)(L) \in \mathscr{B}(X, X)$ by

$$
(D f)(L)(H)=-L^{-2} H L^{-1}-L^{-1} H L^{-2} \quad \forall H \in X,
$$

and (*) implies that

$$
\lim _{K \rightarrow L} \frac{\|f(K)-f(L)-(D f)(L)(K-L)\|}{\|K-L\|}=0 .
$$

Therefore, f is differentiable on $\mathrm{GL}(n)$, and $(D f)(L)$ is given by (\diamond).
Problem 7. Let $X=\mathscr{C}([-, 1,1] ; \mathbb{R})$ and $\|\cdot\|_{X}$ be defined by $\|f\|_{X}=\max _{x \in[-1,1]}|f(x)|$, and $\left(Y,\|\cdot\|_{Y}\right)=$ $(\mathbb{R},|\cdot|)$. Consider the map $\delta: X \rightarrow \mathbb{R}$ be defined by $\delta(f)=f(0)$. Show that δ is differentiable on X. Find $(D \delta)(f)($ for $f \in \mathscr{C}([-1,1] ; \mathbb{R}))$.

Proof. Let $f \in X$ be given. For $h \in X$, we have

$$
\delta(f+h)-\delta f=(f(0)+h(0))-f(0)=h(0)=\delta h ;
$$

thus we expect that $(D \delta)(f)(h)=\delta h$. We first show that $\delta \in \mathscr{B}(X, \mathbb{R})$.

1. For linearity, for $h_{1}, h_{2} \in X$ and $c \in \mathbb{R}$, we have

$$
\delta\left(c h_{1}+h_{2}\right)=\left(c h_{1}+h_{2}\right)(0)=c h_{1}(0)+h_{2}(0)=c \delta h_{1}+\delta h_{2} .
$$

2. For boundedness, if $\|h\|_{X}=1$, then $\max _{x \in[-1,1]}|h(x)|=1$ so that

$$
|\delta h|=|h(0)| \leqslant \max _{x \in[-1,1]}|h(x)|=1<\infty .
$$

Having established that $\delta \in \mathscr{B}(X, \mathbb{R})$, we note that

$$
\lim _{h \rightarrow 0} \frac{|\delta(f+h)-\delta f-\delta h|}{\|h\|_{X}}=\lim _{h \rightarrow 0} \frac{0}{\|h\|_{X}}=0
$$

thus δ is differentiable at f (for all $f \in X$), and $(D \delta)(f)=\delta$ for all $f \in X$.
Problem 8. Let $X=\mathscr{C}([a, b] ; \mathbb{R})$ and $\|\cdot\|_{2}$ be the norm induced by the inner product $\langle f, g\rangle=$ $\int_{a}^{b} f(x) g(x) d x$. Define $I: X \rightarrow X$ by

$$
I(f)(x)=\int_{a}^{x} f(t)^{2} d t \quad \forall x \in[a, b]
$$

Show that I is differentiable on X, and find $(D I)(f)$.
Proof. Let $f \in X$ be given. For $h \in X$,

$$
I(f+h)(x)-I(f)(x)=\int_{a}^{x}(f(t)+h(t))^{2} d t-\int_{a}^{x} f(t)^{2} d t=\int_{a}^{x}\left[2 f(t) h(t)+h(t)^{2}\right] d t ;
$$

thus we expect that

$$
(D I)(f)(h)(x)=2 \int_{a}^{x} f(t) h(t) d t
$$

Define L by $(L h)(x)=2 \int_{a}^{x} f(t) h(t) d t$.
Claim: $L \in \mathscr{B}(X, X)$.

1. For linearity, let $h_{1}, h_{2} \in X$ and $c \in \mathbb{R}$. Then

$$
L\left(c h_{1}+h_{2}\right)(x)=2 \int_{a}^{x} f(t)\left(c h_{1}(t)+h_{2}(t)\right) d t=2 c \int_{a}^{x} f(t) h_{1}(t) d t+2 \int_{a}^{x} f(t) h_{2}(t) d t
$$

which shows that $L\left(c h_{1}+h_{2}\right)=c L\left(h_{1}\right)+L\left(h_{2}\right)$.
2. Note that by the Cauchy-Schwarz inequality,

$$
\left|\int_{a}^{x} f(t) h(t) d t\right| \leqslant \int_{a}^{b}\left|f(t)\|h(t) \mid d t \leqslant\| f\left\|_{2}\right\| h \|_{2}\right.
$$

thus for $\|h\|_{2}=1$,

$$
\|L(h)\|_{2}=\left[\int_{a}^{b}\left(\int_{a}^{x} f(t) h(t) d t\right)^{2} d x\right]^{\frac{1}{2}} \leqslant\left(\int_{a}^{b}\|f\|_{2}^{2}\|h\|_{2}^{2} d x\right)^{\frac{1}{2}} \leqslant \sqrt{b-a}\|f\|_{2} .
$$

Therefore,

$$
\|L\|=\sup _{\|h\|_{2}=1}\|L(h)\|_{2} \leqslant \sqrt{b-a}\|f\|_{2}<\infty
$$

which shows that L is bounded.
Finally, using ($\star \star$) we obtain that

$$
\begin{aligned}
\|I(f+h)-I(f)-L(h)\|_{2} & =\left[\int_{a}^{b}\left(\int_{a}^{x} h(t)^{2} d t\right)^{2} d x\right]^{\frac{1}{2}} \leqslant\left[\int_{a}^{b}\left(\int_{a}^{b} h(t)^{2} d t\right)^{2} d x\right]^{\frac{1}{2}} \\
& =\left[\int_{a}^{b}\|h\|_{2}^{4} d x\right]^{\frac{1}{2}}=\sqrt{b-a}\|h\|_{2}^{2} ;
\end{aligned}
$$

thus

$$
\lim _{h \rightarrow 0} \frac{\|I(f+h)-I(f)-(D I)(f)(h)\|_{2}}{\|h\|_{2}}=0 .
$$

Therefore, I is differentiable at f for all $f \in X$ and $(D I)(f)$ is given by $(\diamond \infty)$.
Problem 9. Let $r>0$ and $\alpha>1$. Suppose that $f: B(0, r) \rightarrow \mathbb{R}$ satisfies $|f(x)| \leqslant\|x\|^{\alpha}$ for all $x \in B(0, r)$. Show that f is differentiable at 0 . What happens if $\alpha=1$?

Problem 10. Suppose that $f, g: \mathbb{R} \rightarrow \mathbb{R}^{m}$ are differentiable at a and there is a $\delta>0$ such that $g(x) \neq 0$ for all $0<|x-a|<\delta$. If $f(a)=g(a)=0$ and $(D g)(a) \neq 0$, show that

$$
\lim _{x \rightarrow a} \frac{\|f(x)\|}{\|g(x)\|}=\frac{\|(D f)(a)\|}{\|(D g)(a)\|} .
$$

Problem 11. Let $U \subseteq \mathbb{R}^{n}$ be open, and $f: U \rightarrow \mathbb{R}$. Suppose that the partial derivatives $\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{n}}$ are bounded on U; that is, there exists a real number $M>0$ such that

$$
\left|\frac{\partial f}{\partial x_{j}}(x)\right| \leqslant M \quad \forall x \in U \text { and } j=1, \cdots, n
$$

Show that f is continuous on U.
Hint: Mimic the proof of Theorem 5.40 in the lecture note.
Proof. Assume that $\left|\frac{\partial f}{\partial x_{i}}(x)\right| \leqslant M$ for all $x \in U$ and $1 \leqslant i \leqslant n$. Let $a \in U$ be given. Then there exists $r>0$ such that $B(a, r) \subseteq U$. For $x \in B(a, r)$, let $k=x-a$. Then

$$
\begin{aligned}
& |f(x)-f(a)|=\left|f\left(a_{1}+k_{1}, a_{2}+k_{2}, \cdots, a_{n}+k_{n}\right)-f\left(a_{1}, a_{2}, \cdots, a_{n}\right)\right| \\
& \quad=\left|\sum_{j=1}^{n}\left[f\left(a_{1}, \cdots, a_{j-1}, a_{j}+k_{j}, \cdots, a_{n}+k_{n}\right)-f\left(a_{1}, \cdots, a_{j}, a_{j+1}+k_{j+1}, \cdots, a_{n}+k_{n}\right)\right]\right| \\
& \quad \leqslant \sum_{j=1}^{n}\left|f\left(a_{1}, \cdots, a_{j-1}, a_{j}+k_{j}, \cdots, a_{n}+k_{n}\right)-f\left(a_{1}, \cdots, a_{j}, a_{j+1}+k_{j+1}, \cdots, a_{n}+k_{n}\right)\right| .
\end{aligned}
$$

By the Mean Value Theorem, for each $1 \leqslant j \leqslant n$ there exists $\theta_{j} \in(0,1)$ such that

$$
\begin{aligned}
& \mid f\left(a_{1}, \cdots, a_{j-1}, a_{j}+k_{j}, \cdots, a_{n}+k_{n}\right)-f\left(a_{1}, \cdots, a_{j}, a_{j+1}+k_{j+1}, \cdots, a_{n}+k_{n}\right) \\
& \quad=\frac{\partial f}{\partial x_{j}}\left(a_{1}, \cdots, a_{j-1}, a_{j}+\theta_{j} k_{j}, a_{j+1}+k_{j+1}, \cdots, a_{n}+k_{n}\right) k_{j}
\end{aligned}
$$

thus

$$
\left|f\left(a_{1}, \cdots, a_{j-1}, a_{j}+k_{j}, \cdots, a_{n}+k_{n}\right)-f\left(a_{1}, \cdots, a_{j}, a_{j+1}+k_{j+1}, \cdots, a_{n}+k_{n}\right)\right| \leqslant M\left|k_{j}\right| .
$$

Therefore, if $x \in B(a, r)$,

$$
|f(x)-f(a)|=\sum_{j=1}^{n} M\left|k_{j}\right| \leqslant M \sqrt{n}\left(\sum_{j=1}^{n}\left|k_{j}\right|^{2}\right)^{\frac{1}{2}}=\sqrt{n} M\|x-a\|_{\mathbb{R}^{n}} .
$$

This shows that f is continuous at a.
Problem 12. Let $U \subseteq \mathbb{R}^{n}$ be open, and $f: U \rightarrow \mathbb{R}$. Show that f is differentiable at $a \in U$ if and only if there exists a vector-valued function $\varepsilon: U \rightarrow \mathbb{R}^{n}$ such that

$$
f(x)-f(a)-\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a)\left(x_{j}-a_{j}\right)=\varepsilon(x) \cdot(x-a)
$$

and $\varepsilon(x) \rightarrow 0$ as $x \rightarrow a$.
Proof. " \Rightarrow " Suppose that f is differentiable at a. Define $\varepsilon: U \rightarrow \mathbb{R}^{n}$ by

$$
\varepsilon(x)=\left\{\begin{array}{cl}
{\left[f(x)-f(a)-\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a)\left(x_{j}-a_{j}\right)\right] \frac{x-a}{\|x-a\|^{2}}} & \text { if } x \neq a \\
0 & \text { if } x=a
\end{array}\right.
$$

Then for $x \neq a$,

$$
|\varepsilon(x)| \leqslant \frac{\left|f(x)-f(a)-\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a)\left(x_{j}-a_{j}\right)\right|}{\|x-a\|}
$$

which, by the differentiability of f at a, implies that

$$
\lim _{x \rightarrow a}|\varepsilon(x)|=0 .
$$

Moreover,

$$
\varepsilon(x) \cdot(x-a)=f(x)-f(a)-\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a)\left(x_{j}-a_{j}\right) .
$$

" \Leftarrow " Suppose that there exists a vector-valued function $\varepsilon: U \rightarrow \mathbb{R}^{n}$ such that

$$
f(x)-f(a)-\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a)\left(x_{j}-a_{j}\right)=\varepsilon(x) \cdot(x-a)
$$

and $\varepsilon(x) \rightarrow 0$ as $x \rightarrow a$. Then for $x \neq a$, the Cauchy-Schwarz inequality implies that

$$
\frac{\left|f(x)-f(a)-\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a)\left(x_{j}-a_{j}\right)\right|}{\|x-a\|}=\frac{|\varepsilon(x) \cdot(x-a)|}{\|x-a\|} \leqslant\|\varepsilon(x)\| ;
$$

thus

$$
\lim _{x \rightarrow a} \frac{\left|f(x)-f(a)-\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a)\left(x_{j}-a_{j}\right)\right|}{\|x-a\|}=0 .
$$

Therefore, f is differentiable at a with $[(D f)(a)]=\left[\frac{\partial f}{\partial x_{1}}(a), \cdots, \frac{\partial f}{\partial x_{n}}(a)\right]$.
Problem 13. Let

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x^{3} y}{x^{4}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

and $u \in \mathbb{R}^{2}$ be a unit vector. Show that the directional derivative of f at the origin exists in all direction, and

$$
\left(D_{u} f\right)(0,0)=\left(\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)\right) \cdot u
$$

Is f differentiable at $(0,0)$?
Solution. Let $u=(\cos \theta, \sin \theta)$ be a unit vector. Then the directional derivative of f at $(0,0)$ in direction u is

$$
\begin{aligned}
\left(D_{u} f\right)(0,0) & =\lim _{t \rightarrow 0^{+}} \frac{f(t \cos \theta, t \sin \theta)-f(0,0)}{t}=\lim _{t \rightarrow 0^{+}} \frac{t^{4} \cos ^{3} \theta \sin \theta}{t\left(t^{4} \cos ^{4} \theta+t^{2} \sin ^{2} \theta\right)} \\
& =\lim _{t \rightarrow 0^{+}} \frac{t \cos ^{3} \theta \sin \theta}{t^{2} \cos ^{4} \theta+\sin ^{2} \theta}=0
\end{aligned}
$$

On the other hand,

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=0 \quad \text { and } \quad f_{y}(0,0)=\lim _{k \rightarrow 0} \frac{f(0, k)-f(0,0)}{k}=0
$$

thus we conclude that $\left(D_{u} f\right)(0,0)=\left(f_{x}(0,0), f_{y}(0,0)\right) \cdot u$.
Since $f_{x}(0,0)=f_{y}(0,0)=0$, if f is differentiable at $(0,0)$, we must have

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{|f(x, y)-f(0,0)-0 \cdot(x-0)-0 \cdot(y-0)|}{\sqrt{x^{2}+y^{2}}}=\lim _{(x, y) \rightarrow(0,0)} \frac{\left|x^{3} y\right|}{\sqrt{x^{2}+y^{2}}\left(x^{4}+y^{2}\right)}=0 ;
$$

however, by passing to the limit as $(x, y) \rightarrow(0,0)$ along the curve $y=x^{2}$, we find that

$$
0=\lim _{x \rightarrow 0} \frac{\left|x^{3} \cdot x^{2}\right|}{\sqrt{x^{2}+x^{4}\left(x^{4}+x^{4}\right)}}=\lim _{x \rightarrow 0} \frac{1}{2 \sqrt{1+x^{2}}}=\frac{1}{2},
$$

a contradiction. Therefore, f is not differentiable at $(0,0)$.

