Exercise Problem Sets 8

Nov．12． 2021

In the exercise section of this chapter，we first introduce the concepts of accumulation points， isolated points and derived set of a set as follows．

Definition 0．1．Let (M, d) be a normed vector space，and A be a subset of M ．
1．A point $x \in M$ is called an accumulation point of A if there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in $A \backslash\{x\}$ such that $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to x ．

2．A point $x \in A$ is called an isolated point（孤立點）（of A ）if there exists no sequence in $A \backslash\{x\}$ that converges to x ．

3．The derived set of A is the collection of all accumulation points of A ，and is denoted by A^{\prime} ．
Problem 1．Let (M, d) be a metric space，and A be a subset of M ．
1．Show that the collection of all isolated points of A is $A \backslash A^{\prime}$ ．
2．Show that $A^{\prime}=\bar{A} \backslash\left(A \backslash A^{\prime}\right)$ ．In other words，the derived set consists of all limit points that are not isolated points．Also show that $\bar{A} \backslash A^{\prime}=A \backslash A^{\prime}$ ．

Proof．1．By the definition of isolated points of sets，

$$
\begin{aligned}
x \in A \backslash A^{\prime} & \Leftrightarrow x \in A \text { and } x \text { is not an accumulation point of } A \\
& \Leftrightarrow x \in A \text { and } \exists \varepsilon>0 \ni B(x, \varepsilon) \cap A \backslash\{x\}=\varnothing \\
& \Leftrightarrow x \in A \text { and } \exists \varepsilon>0 \ni B(x, \varepsilon) \cap A \subseteq\{x\} \\
& \Leftrightarrow \exists \varepsilon>0 \ni B(x, \varepsilon) \cap A=\{x\} ;
\end{aligned}
$$

thus x is an isolated point of A if and only if $x \in A \backslash A^{\prime}$ ．
2．First we show that $\bar{A}=A \cup A^{\prime}$ ．To see this，let $x \in \bar{A} \backslash A$ ．By the fact that $A=A \backslash\{x\}$ ，there exists $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq A \backslash\{x\}$ such that $\lim _{n \rightarrow \infty} x_{n}=x$ ．Therefore，$x \in A^{\prime}$ which implies that

$$
\bar{A} \backslash A \subseteq A^{\prime} \subseteq \bar{A},
$$

where we use the fact that $\bar{A} \supseteq A^{\prime}$ to conclude the last inclusion．The inclusion relation above then shows that

$$
\bar{A}=A \cup \bar{A}=A \cup(\bar{A} \backslash A) \subseteq A \cup A^{\prime} \subseteq A \cup \bar{A}=\bar{A} ;
$$

thus we establish that $\bar{A}=A \cup A^{\prime}$ ．This identity further shows that

$$
\bar{A} \cap A^{\complement}=\left(A \cup A^{\prime}\right) \cap A^{\complement}=A^{\prime} \cap A^{\complement} \subseteq A .
$$

Now, using the identity $A \backslash B=A \cap B^{\complement}$ we find that

$$
\begin{aligned}
\bar{A} \backslash\left(A \backslash A^{\prime}\right) & =\bar{A} \cap\left(A \cap\left(A^{\prime}\right)^{\complement}\right)^{\complement}=\bar{A} \cap\left(A^{\complement} \cup A^{\prime}\right)=\left(\bar{A} \cap A^{\complement}\right) \cup\left(\bar{A} \cap A^{\prime}\right) \\
& =\left(\bar{A} \cap A^{\complement}\right) \cup A^{\prime}=A^{\prime}
\end{aligned}
$$

Moreover, using $\bar{A}=A \cup A^{\prime}$ we also have

$$
\bar{A} \backslash A^{\prime}=\left(A \cup A^{\prime}\right) \cap\left(A^{\prime}\right)^{\complement}=A \cap\left(A^{\prime}\right)^{\complement}=A \backslash A^{\prime} .
$$

Problem 2. Let A and B be subsets of a metric space (M, d). Show that

1. $\operatorname{cl}(\operatorname{cl}(A))=\operatorname{cl}(A)$.
2. $\operatorname{cl}(A \cup B)=\operatorname{cl}(A) \cup \operatorname{cl}(B)$.
3. $\operatorname{cl}(A \cap B) \subseteq \operatorname{cl}(A) \cap \operatorname{cl}(B)$. Find examples of that $\operatorname{cl}(A \cap B) \subsetneq \operatorname{cl}(A) \cap \operatorname{cl}(B)$.

Proof. 1. Since $\operatorname{cl}(A)$ is closed, by the definition of closed set we have $\operatorname{cl}(\operatorname{cl}(A))=\operatorname{cl}(A)$.
2. Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, we have $\operatorname{cl}(A) \subseteq \operatorname{cl}(A \cup B)$ and $\operatorname{cl}(B) \subseteq \operatorname{cl}(A \cup B)$; thus $\operatorname{cl}(A) \cup \operatorname{cl}(B) \subseteq \operatorname{cl}(A \cup B)$. On the other hand, if $x \in \operatorname{cl}(A \cup B)$, there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in $A \cup B$ such that $\lim _{n \rightarrow \infty} x_{n}=x$. Since $A \cup B$ contains infinitely many terms of $\left\{x_{n}\right\}_{n=1}^{\infty}$, at least one of A and B contains infinitely many terms of $\left\{x_{n}\right\}_{n=1}^{\infty}$. W.L.O.G., suppose that $\#\left\{n \in \mathbb{N} \mid x_{n} \in A\right\}=\infty$. Let

$$
\left\{n \in \mathbb{N} \mid x_{n} \in A\right\}=\left\{n_{k} \in \mathbb{N} \mid n_{k}<n_{k+1}\right\}
$$

Then $\left\{x_{n_{k}}\right\}_{k=1}^{\infty} \in A$. Since $x_{n} \rightarrow x$ as $n \rightarrow \infty$, we must have $x_{n_{k}} \rightarrow x$ as $k \rightarrow \infty$; thus $x \in \operatorname{cl}(A)$. Therefore, $\operatorname{cl}(A \cup B) \subseteq \operatorname{cl}(A) \cup \operatorname{cl}(B)$.
3. Let $x \in \operatorname{cl}(A \cap B)$. Then

$$
(\forall \varepsilon>0)(B(x, \varepsilon) \cap(A \cap B) \neq \varnothing) .
$$

Therefore, by the fact that $B(x, \varepsilon) \cap A \subseteq B(x, \varepsilon) \cap(A \cap B)$ and $B(x, \varepsilon) \cap B \subseteq B(x, \varepsilon) \cap(A \cap B)$, we have

$$
(\forall \varepsilon>0)(B(x, \varepsilon) \cap A \neq \varnothing) \quad \text { and } \quad(\forall \varepsilon>0)(B(x, \varepsilon) \cap B \neq \varnothing)
$$

This implies that $x \in \bar{A} \cap \bar{B}$. Note that if $A=\mathbb{Q}$ and $B=\mathbb{Q}^{C}$, then $\operatorname{cl}(A \cap B)=\varnothing$, while $\bar{A}=\bar{B}=\mathbb{R}$ which provides an example of $\operatorname{cl}(A \cap B) \subsetneq \bar{A} \cap \bar{B}$.

Problem 3. Let A and B be subsets of a metric space (M, d). Show that

1. $\operatorname{int}(\operatorname{int}(A))=\operatorname{int}(A)$.
2. $\operatorname{int}(A \cap B)=\operatorname{int}(A) \cap \operatorname{int}(B)$.
3. $\operatorname{int}(A \cup B) \supseteq \operatorname{int}(A) \cup \operatorname{int}(B)$. Find examples of that $\operatorname{int}(A \cup B) \supsetneq \operatorname{int}(A) \cup \operatorname{int}(B)$.

Proof. 1. Since $\operatorname{int}(A)$ is open, by the definition of open sets we have $\operatorname{int}(\operatorname{int}(A))=\operatorname{int}(A)$.
2. Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, we have $\operatorname{int}(A \cap B) \subseteq \operatorname{int}(A)$ and $\operatorname{int}(A \cap B) \subseteq \operatorname{int}(B)$; thus $\operatorname{int}(A \cap B) \subseteq \operatorname{int}(A) \cap \operatorname{int}(B)$. On the other hand, let $x \in \operatorname{int}(A) \cap \operatorname{int}(B)$. Then $x \in \operatorname{int}(A)$ and $x \in \operatorname{int}(B)$; thus there exist $r_{1}, r_{0}>0$ such that

$$
B\left(x, r_{1}\right) \subseteq A \quad \text { and } \quad B(x, r) \subseteq B
$$

Let $r=\min \left\{r_{1}, r_{2}\right\}$. Then $r>0$, and $B(x, r) \subseteq B\left(x, r_{1}\right)$ and $B(x, r) \subseteq B\left(x, r_{2}\right)$. Therefore, $B(x, r) \subseteq A$ and $B(x, r) \subseteq B$ which further implies that $B(x, r) \subseteq A \cap B$; thus $x \in \operatorname{int}(A \cap B)$.
3. Let $x \in \AA \cup \AA$. Then $x \in \AA$ or $x \in \stackrel{\circ}{B}$; thus there exists $r>0$ such that $B(x, r) \subseteq A$ or $B(x, r) \subseteq B$. Therefore, there exists $r>0$ such that $B(x, r) \subseteq A \cup B$ which shows that $\operatorname{int}(A \cup B) \supseteq \operatorname{int}(A) \cup \operatorname{int}(B)$. Note that if $A=\mathbb{Q}$ and $B=\mathbb{Q}^{C}$, then $\operatorname{int}(A \cup B)=\mathbb{R}$ while $\operatorname{int}(A)=\operatorname{int}(B)=\varnothing$; thus we obtain an example of $\operatorname{int}(A \cup B) \supsetneq \operatorname{int}(A) \cup \operatorname{int}(B)$.

Problem 4. Let (M, d) be a metric space, and A be a subset of M. Show that

$$
\partial A=(A \cap \operatorname{cl}(M \backslash A)) \cup(\operatorname{cl}(A) \backslash A)
$$

Proof. By the definition of the boundary, $\partial A=\bar{A} \cap \overline{A^{c}}$; thus

$$
\begin{aligned}
& (A \cap \operatorname{cl}(M \backslash A)) \cup(\mathrm{cl}(A) \backslash A)=\left(A \cap \overline{A^{\complement}}\right) \cup\left(\bar{A} \cap A^{\complement}\right) \\
& \quad=\left[A \cup\left(\bar{A} \cap A^{\complement}\right)\right] \cap\left[\overline{A^{\complement}} \cup\left(\bar{A} \cap A^{\complement}\right)\right]=\bar{A} \cap\left[\left(\overline{A^{\complement}} \cup \bar{A}\right) \cap\left(\overline{A^{\complement}} \cup A^{\complement}\right)\right] \\
& \quad=\bar{A} \cap\left[\left(\overline{A^{\complement}} \cup \bar{A}\right) \cap \overline{A^{\complement}}\right]=\partial A \cap\left(\overline{A^{\complement}} \cup \bar{A}\right)=\partial A,
\end{aligned}
$$

where the last equality follows from that $\partial A \subseteq \bar{A}$ and $\partial A \subseteq \overline{A^{c}}$.
Problem 5. Recall that in a metric space (M, d), a subset A is said to be dense in S if subsets satisfy $A \subseteq S \subseteq \operatorname{cl}(A)$. For example, \mathbb{Q} is dense in \mathbb{R}.

1. Show that if A is dense in S and if S is dense in T, then A is dense in T.
2. Show that if A is dense in S and $B \subseteq S$ is open, then $B \subseteq \operatorname{cl}(A \cap B)$.

Proof. 1. If A is dense in S and if S is dense in T, then $A \subseteq S \subseteq \bar{A}$ and $S \subseteq T \subseteq \bar{S}$. Since $S \subseteq \bar{A}$, we must have $\bar{S} \subseteq \bar{A}$; thus

$$
A \subseteq S \subseteq T \subseteq \bar{S} \subseteq \bar{A}
$$

which shows that A is dense in T.
2. Let $x \in B$. Since B is open, there exists $\varepsilon_{0}>0$ such that $B\left(x, \varepsilon_{0}\right) \subseteq B \subseteq S$. On the other hand, $x \in S$ since B is a subset of S; thus the denseness of A in S implies that

$$
(\forall \varepsilon>0)(B(x, \varepsilon) \cap A \neq \varnothing) .
$$

Therefore, for a given $\varepsilon>0$, if $\varepsilon \geqslant \varepsilon_{0}$, then

$$
\left.B(x, \varepsilon) \cap(A \cap B) \supseteq B\left(x, \varepsilon_{0}\right) \cap(A \cap B)=B\left(x, \varepsilon_{0}\right) \cap A \neq \varnothing\right)
$$

while if $\varepsilon<\varepsilon_{0}$, then

$$
B(x, \varepsilon) \cap(A \cap B)=B(x, \varepsilon) \cap A \neq \varnothing .
$$

This implies that

$$
(\forall \varepsilon>0)(B(x, \varepsilon) \cap(A \cap B) \neq \varnothing) ;
$$

thus $x \in \operatorname{cl}(A \cap B)$.
Problem 6. Let A and B be subsets of a metric space (M, d). Show that

1. $\partial(\partial A) \subseteq \partial(A)$. Find examples of that $\partial(\partial A) \subsetneq \partial A$. Also show that $\partial(\partial A)=\partial A$ if A is closed.
2. $\partial(A \cup B) \subseteq \partial A \cup \partial B \subseteq \partial(A \cup B) \cup A \cup B$. Find examples of that equalities do not hold.
3. If $\operatorname{cl}(A) \cap \operatorname{cl}(B)=\varnothing$, then $\partial(A \cup B)=\partial A \cup \partial B$.
4. $\partial(A \cap B) \subseteq \partial A \cup \partial B$. Find examples of the equalities do not hold.
5. $\partial(\partial(\partial A))=\partial(\partial A)$.

Proof. 1. We note that if F is closed, then

$$
\partial F=\bar{F} \cap \overline{F^{\complement}}=F \cap \overline{F^{\complement}} \subseteq F .
$$

Since ∂F is closed, we must have $\partial(\partial A) \subseteq \partial A$. Note that if $A=\mathbb{Q} \cap[0,1]$, then $\partial A=[0,1]$; thus $\partial(\partial A)=\{0,1\} \subsetneq \partial A$. Finally we show that $\partial(\partial A)=\partial A$ if A is closed. Using (\diamond), it suffices to show that $\partial A \subseteq \partial(\partial A)$. Using 2 of Problem 2,

$$
\begin{aligned}
\partial(\partial A) & =\partial A \cap \operatorname{cl}\left((\partial A)^{\complement}\right)=\partial A \cap \operatorname{cl}\left(A^{\complement} \cup{\overline{A^{\complement}}}^{\complement}\right)=\partial A \cap\left(\overline{A^{\complement}} \cup \operatorname{cl}\left({\left.\overline{A^{\complement}}\right)}_{\complement}\right)\right. \\
& =\left(\partial A \cap \overline{A^{\complement}}\right) \cup\left(\partial A \cap \operatorname{cl}\left(\overline{A^{\complement}}\right)\right) \supseteq\left(\partial A \cap \overline{A^{\complement}}\right)=\partial A
\end{aligned}
$$

2. Using 2 and 3 of Problem 2,

$$
\begin{aligned}
\partial(A \cup B) & =\overline{A \cup B} \cap \operatorname{cl}\left((A \cup B)^{\complement}\right)=(\bar{A} \cup \bar{B}) \cap \operatorname{cl}\left(A^{\complement} \cap B^{\complement}\right) \subseteq(\bar{A} \cup \bar{B}) \cap\left(\overline{A^{\complement}} \cap \overline{B^{\complement}}\right) \\
& =\left(\bar{A} \cap \overline{A^{\complement}} \cap \overline{B^{\complement}}\right) \cup\left(\bar{B} \cap \overline{A^{\complement}} \cap \overline{B^{\complement}}\right) \subseteq\left(\bar{A} \cap \overline{A^{\complement}}\right) \cup\left(\bar{B} \cap \overline{B^{\complement}}\right)=\partial A \cup \partial B .
\end{aligned}
$$

On the other hand, since $\partial A=\bar{A} \backslash A$ and $\AA \subseteq A$, we have

$$
\bar{A} \subseteq A \cup \partial A \subseteq \AA \cup(\bar{A} \backslash \AA)=\bar{A}
$$

which implies that $A \cup \partial A=\bar{A}$. Therefore,

$$
\partial A \subseteq \bar{A} \subseteq \overline{A \cup B}=A \cup B \cup \partial(A \cup B)
$$

and similarly $\partial B \subseteq A \cup B \cup \partial(A \cup B)$. Therefore,

$$
\partial A \cup \partial B \subseteq \partial(A \cup B) \cup A \cup B
$$

Note that if $A=[-1,0] \cup(\mathbb{Q} \cap[0,1])$ and $B=[-1,0] \cup\left(\mathbb{Q}^{C} \cap[0,1]\right)$, then $A \cup B=[-1,1]$, $\partial A=\partial B=\{-1\} \cup[0,1]$ which implies that

$$
\partial(A \cup B)=\{-1,1\} \subsetneq \partial A \cup \partial B \subsetneq A \cup B=\partial(A \cup B) \cup A \cup B
$$

3. By 2 , it suffices to shows that $\partial A \cup \partial B \subseteq \partial(A \cup B)$ if $\bar{A} \cap \bar{B}=\varnothing$. Let $x \in \partial A \cup \partial B$. W.L.O.G., assume that $x \in \partial A$. Then $x \in \bar{A}$; thus $x \notin \bar{B}$ which further implies that there exists $\varepsilon_{0}>0$ such that $B\left(x, \varepsilon_{0}\right) \cap B=\varnothing$ or equivalently, $B\left(x, \varepsilon_{0}\right) \subseteq B^{\complement}$. Therefore, for given $r>0$, if $r<\varepsilon_{0}$, then

$$
B(x, r) \cap(A \cup B) \supseteq B(x, r) \cap A \neq \varnothing
$$

and

$$
B(x, r) \cap\left((A \cup B)^{\complement}\right)=B(x, r) \cap\left(A^{\complement} \cap B^{\complement}\right)=B(x, r) \cap A^{\complement} \neq \varnothing
$$

while if $r \geqslant \varepsilon_{0}$, then

$$
B(x, r) \cap(A \cup B) \subseteq B\left(x, \varepsilon_{0}\right) \cap(A \cup B) \supseteq B\left(x, \varepsilon_{0}\right) \cap A \neq \varnothing
$$

and

$$
B(x, r) \cap\left((A \cup B)^{\complement}\right) \supseteq B\left(x, \varepsilon_{0}\right) \cap\left(A^{\complement} \cap B^{\complement}\right)=B\left(x, \varepsilon_{0}\right) \cap A^{\complement} \neq \varnothing .
$$

As a consequence, for each $r>0$,

$$
B(x, r) \cap(A \cup B) \neq \varnothing \quad \text { and } \quad B(x, r) \cap(A \cup B)^{c} ;
$$

thus $x \in \overline{A \cup B}$ and $x \in \operatorname{cl}\left((A \cup B)^{C}\right)$ which implies that $x \in \partial(A \cup B)$.
4. Using 2 and 3 of Problem 2,

$$
\begin{aligned}
\partial(A \cap B) & =\overline{A \cap B} \cap \operatorname{cl}\left((A \cap B)^{\complement}\right)=\overline{A \cap B} \cap \operatorname{cl}\left(A^{\complement} \cup B^{\complement}\right) \subseteq(\bar{A} \cap \bar{B}) \cap\left(\overline{A^{\complement}} \cup \overline{B^{\complement}}\right) \\
& =\left[(\bar{A} \cap \bar{B}) \cap \overline{A^{\complement}}\right] \cup\left[(\bar{A} \cap \bar{B}) \cap \overline{B^{\complement}}\right] \subseteq\left(\bar{A} \cap \overline{A^{\complement}}\right) \cup\left(\bar{B} \cap \overline{B^{\complement}}\right)=\partial A \cup \partial B .
\end{aligned}
$$

Note that if $A=\mathbb{Q}$ and $B=\mathbb{Q}^{C}$, then $\partial A=\partial B=\mathbb{R}$ but

$$
\partial(A \cap B)=\varnothing \subsetneq \mathbb{R}=\partial A \cap \partial B
$$

5. Since ∂A is closed, 1 implies that $\partial(\partial(\partial A))=\partial(\partial A)$.

Problem 7. Let (M, d) be a metric space, and A be a subset of M. Show that $A \supseteq A^{\prime}$ if and only if A is closed.

Proof. " \Leftarrow " Note that 2 of Problem 1 implies that $\bar{A} \supseteq A^{\prime}$; thus if A is closed, $A=\bar{A} \supseteq A^{\prime}$.
" \Rightarrow " In 2 of Problem 1, we show that $\bar{A}=A \cup A^{\prime}$. Therefore, if $A \supseteq A^{\prime}$, we have $\bar{A}=A \cup A^{\prime}=A$ which shows that A is closed.

Problem 8. Show that the derived set of a set (in a metric space) is closed.
Proof. Let $y \notin A^{\prime}$. Then there exists $\varepsilon>0$ such that

$$
B(y, \varepsilon) \cap(A \backslash\{y\})=(B(y, \varepsilon) \backslash\{y\}) \cap A=\varnothing
$$

Then $A \subseteq(B(y, \varepsilon) \backslash\{y\})^{\complement}$. Since

$$
(B(y, \varepsilon) \backslash\{y\})^{\complement}=\left(B(y, \varepsilon) \cap\{y\}^{\complement}\right)^{\complement}=B(y, \varepsilon)^{\complement} \cup\{y\}
$$

by the fact that $B(y, \varepsilon)^{\complement}$ is closed, $(B(y, \varepsilon) \backslash\{y\})^{\complement}$ is closed. Therefore,

$$
\bar{A} \subseteq(B(y, \varepsilon) \backslash\{y\})^{\complement} \quad \text { or equivalently, } \quad \bar{A} \cap B(y, \varepsilon) \backslash\{y\}=\varnothing
$$

Since $\bar{A}=A \cup A^{\prime}$, the equality above implies that

$$
A^{\prime} \cap B(y, \varepsilon) \backslash\{y\}=\varnothing ;
$$

thus the fact that $y \notin A^{\prime}$ implies that $B(y, \varepsilon) \cap A^{\prime}=\varnothing$.
Problem 9. Let $A \subseteq \mathbb{R}^{n}$. Define the sequence of sets $A^{(m)}$ as follows: $A^{(0)}=A$ and $A^{(m+1)}=$ the derived set of $A^{(m)}$ for $m \in \mathbb{N}$. Complete the following.

1. Prove that each $A^{(m)}$ for $m \in \mathbb{N}$ is a closed set; thus $A^{(1)} \supseteq A^{(2)} \supseteq \cdots$.
2. Show that if there exists some $m \in \mathbb{N}$ such that $A^{(m)}$ is a countable set, then A is countable.
3. For any given $m \in \mathbb{N}$, is there a set A such that $A^{(m)} \neq \varnothing$ but $A^{(m+1)}=\varnothing$?
4. Let A be uncountable. Then each $A^{(m)}$ is an uncountable set. Is it possible that $\bigcap_{m=1}^{\infty} A^{(m)}=\varnothing$?
5. Let $A=\left\{\left.\frac{1}{m}+\frac{1}{k} \right\rvert\, m-1>k(k-1), m, k \in \mathbb{N}\right\}$. Find $A^{(1)}, A^{(2)}$ and $A^{(3)}$.

Proof. 1. See Problem 8 for that A^{\prime} is closed for all $A \subseteq M$. Moreover, Problem 7 shows that $A \supseteq A^{\prime}$ if A is closed (in fact, A is closed if and only if $A \supseteq A^{\prime}$). Therefore, knowing that $A^{(m)}$ is closed for all $m \in \mathbb{N}$, we obtain that $A^{(m)} \supseteq A^{(m+1)}$ for all $m \in \mathbb{N}$.
2. Note that $A \backslash A^{\prime}$ consists of all isolated points of A. For $m \in \mathbb{N}$, define $B^{(m-1)}=A^{(m-1)} \backslash A^{(m)}$. Then $B^{(m-1)}$ consists of isolated points of $A^{(m-1)}$; thus $B^{(m-1)}$ is countable for all $m \in \mathbb{N}$ (why?). Since for any subset A of M, we have

$$
A \subseteq\left(A \backslash A^{\prime}\right) \cup A^{\prime}
$$

and equality holds if A is closed, 1 implies that

$$
\begin{aligned}
A & \subseteq\left(A \backslash A^{(1)}\right) \cup A^{(1)}=B^{(0)} \cup A^{(1)}=B^{(0)} \cup\left[\left(A^{(1)} \backslash A^{(2)}\right) \cup A^{(2)}\right]=B^{(0)} \cup B^{(1)} \cup A^{(2)} \\
& =\cdots=B^{(0)} \cup B^{(1)} \cup \cdots \cup B^{(m-1)} \cup A^{(m)} .
\end{aligned}
$$

If $A^{(m)}$ is countable, we find that A is a subset of a finite union of countable sets; thus A is countable.
4. By 2 , if $A^{(m)}$ is countable for some $m \in \mathbb{N}$, then A is countable; thus if A is uncountable, $A^{(m)}$ must be uncountable for all $m \in \mathbb{N}$.
5. For each $k \in \mathbb{N}$, let $B_{k}=\left\{\left.\frac{1}{m}+\frac{1}{k} \right\rvert\, m-1>k(k-1), m, k \in \mathbb{N}\right\}$. Then $A=\bigcup_{k=1}^{\infty} B_{k}$. Moreover, for each $k \in \mathbb{N}$,

$$
\sup B_{k}=\frac{1}{k(k-1)+2}+\frac{1}{k} \quad \text { and } \quad \inf B_{k}=\frac{1}{k}
$$

thus $\sup B_{k+1}<\inf B_{k}$ for each $k \in \mathbb{N}$. Therefore, B_{k+1} is on the left of B_{k} for each $k \in \mathbb{N}$. We also note that every element in A is an isolated point of A.

Suppose that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a convergent sequence in A.
(a) Suppose that there exists $k \in \mathbb{N}$ such that $\left\{n \in \mathbb{N} \mid x_{n} \in B_{k}\right\}=\infty$. Then $\lim _{n \rightarrow \infty} x_{n} \in \overline{B_{k}}$.
(b) Suppose that for all $k \in \mathbb{N}$ we have $\left\{n \in \mathbb{N} \mid x_{n} \in B_{k}\right\}<\infty$. Then there exists a subsequence $\left\{x_{n_{j}}\right\}_{j=1}^{\infty}$ of $\left\{x_{n}\right\}_{n=1}^{\infty}$ satisfying that $x_{n_{j+1}}<x_{n_{j}}$ for all $j \in \mathbb{N}$. Such a subsequence must converge to 0 since for each $k \in \mathbb{N}$ only finitely many terms of $x_{n_{j}}$ belongs to the set $B_{1} \cup B_{2} \cup \cdots \cup B_{k}$ while the supremum of the rest of the subsequence is not greater than $\inf B_{k}$.

Therefore, by the fact that $\overline{B_{k}}=B_{k} \cup\left\{\frac{1}{k}\right\}$, we find that

$$
\bar{A}=A \cup\left\{\left.\frac{1}{k} \right\rvert\, k \in \mathbb{N}\right\} \cup\{0\} .
$$

Then the fact that every point in A is an isolated point of A implies that

$$
A^{\prime}=\bar{A} \backslash \text { collection of isolated point of } A=\left\{\left.\frac{1}{k} \right\rvert\, k \in \mathbb{N}\right\} \cup\{0\} .
$$

Noting that every point of A^{\prime} except $\{0\}$ is an isolated point of A^{\prime}, we have $A^{(2)}=\{0\}$ so that $A^{(3)}=\varnothing$.
3. Following 5, we have a clear picture how to construct such a set. Let

$$
A_{m}=\left\{\left.\frac{1}{i_{1}}+\frac{1}{i_{2}}+\cdots+\frac{1}{i_{m}} \right\rvert\, i_{j} \in \mathbb{N} \text { and } i_{j+1}-1>i_{j}\left(i_{j}-1\right) \text { for all } 1 \leqslant j \leqslant m\right\} .
$$

Then $A_{m}^{\prime}=A_{m-1} \cup\{0\}, A_{m}^{(2)}=A_{m-2} \cup\{0\}, \cdots, A_{m}^{(k)}=A_{m-k} \cup\{0\}$ if $m>k, A_{m}^{(m)}=\{0\}$ and $A_{m}^{(m+1)}=\varnothing$.

Problem 10. Recall that a cluster point x of a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ satisfies that

$$
\forall \varepsilon>0, \#\left\{n \in \mathbb{N} \mid x_{n} \in B(x, \varepsilon)\right\}=\infty .
$$

Show that the collection of cluster points of a sequence (in a metric space) is closed.

Proof. Let (M, d) be a metric space, $\left\{x_{k}\right\}_{k=1}^{\infty}$ be a sequence in M, and A be the collection of cluster points of $\left\{x_{k}\right\}_{k=1}^{\infty}$. We would like to show that $A \supseteq \bar{A}$.

Let $y \in A^{\complement}$. Then y is not a cluster point of $\left\{x_{k}\right\}_{k=1}^{\infty}$; thus

$$
\exists \varepsilon>0 \ni \#\left\{n \in \mathbb{N} \mid x_{n} \in B(y, \varepsilon)\right\}<\infty .
$$

For $z \in B(y, \varepsilon)$, let $r=\varepsilon-d(y, z)>0$. Then $B(z, r) \subseteq B(y, \varepsilon)$ (see Figure 1 or check rigorously using the triangle inequality). As a consequence, $\#\left\{n \in \mathbb{N} \mid x_{n} \in B(z, r)\right\}<\infty$ which implies that $z \notin A$.

Figure 1: $B(z, \varepsilon-d(y, z)) \subseteq B(y, \varepsilon)$ if $z \in B(y, \varepsilon)$

Therefore, if $z \in B(y, \varepsilon)$ then $z \in A^{\complement}$; thus $B(y, \varepsilon) \cap A=\varnothing$. We then conclude that if $y \in A^{\complement}$ then $y \notin \bar{A}$.

Problem 11. Let $(\mathcal{V},\|\cdot\|)$ ba a normed vector space. A set C in \mathcal{V} is called convex if for all $x, y \in C$, the line segment joining x and y, denoted by $\overline{x y}$, lies in C. Let C be a non-empty convex set in \mathcal{V}.

1. Show that \bar{C} is convex.
2. Show that if $\boldsymbol{x} \in \dot{C}$ and $\boldsymbol{y} \in \bar{C}$, then $(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y} \in C$ for all $\lambda \in(0,1)$. This result is sometimes called the line segment principle.
3. Show that \dot{C} is convex (you may need the conclusion in 2 to prove this).
4. Show that $\operatorname{cl}(\stackrel{\circ}{C})=\operatorname{cl}(C)$.
5. Show that $\operatorname{int}(\bar{C})=\operatorname{int}(C)$.

Hint: 2. Prove by contradiction.
3 and 4 . Use the line segment principle.
5. Show that $\boldsymbol{x} \in \operatorname{int}(\bar{C})$ can be written as $(1-\lambda) \boldsymbol{y}+\lambda \boldsymbol{z}$ for some $\boldsymbol{y} \in \stackrel{C}{C}$ and $\boldsymbol{z} \in B(\boldsymbol{x}, \varepsilon) \subseteq \bar{C}$.

Proof. 1. Let $\boldsymbol{x}, \boldsymbol{y} \in \bar{C}$ and $0 \leqslant \lambda \leqslant 1$ be given. Then there exist sequences $\left\{\boldsymbol{x}_{k}\right\}_{k=1}^{\infty}$ and $\left\{\boldsymbol{y}_{k}\right\}_{k=1}^{\infty}$ in C such that $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}$ and $\boldsymbol{y}_{k} \rightarrow \boldsymbol{y}$ as $k \rightarrow \infty$. Since C is convex, $(1-\lambda) \boldsymbol{x}_{k}+\lambda \boldsymbol{y}_{k} \in C$ for each $k \in \mathbb{N}$; thus by the fact that $C \subseteq \bar{C},(1-\lambda) \boldsymbol{x}_{k}+\lambda \boldsymbol{y}_{k} \in \bar{C}$ for each $k \in \mathbb{N}$. Since $(1-\lambda) \boldsymbol{x}_{k}+\lambda \boldsymbol{y}_{k} \rightarrow(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y}$ as $k \rightarrow \infty$ and \bar{C} is closed, we must have $(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y} \in \bar{C}$; thus \bar{C} is convex if C is convex.
2. Suppose the contrary that there exists $\lambda \in(0,1)$ such that $(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y} \notin \dot{C}$. Then for each $k \in \mathbb{N}$, there exists $\boldsymbol{z}_{k} \notin C$ such that

$$
\left\|(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y}-\boldsymbol{z}_{k}\right\|<\frac{1}{k} \quad \forall k \in \mathbb{N} .
$$

Since $\boldsymbol{y} \in \bar{C}$, there exists a sequence $\left\{\boldsymbol{y}_{k}\right\}_{k=1}^{\infty} \in C$ satisfying

$$
\left\|\boldsymbol{y}_{k}-\boldsymbol{y}\right\|<\frac{1}{\lambda k} \quad \forall k \in N .
$$

Therefore, if $k \in N$,

$$
\left\|(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y}_{k}-\boldsymbol{z}_{k}\right\| \leqslant\left\|(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y}-\boldsymbol{z}_{k}\right\|+\left\|\lambda\left(\boldsymbol{y}-\boldsymbol{y}_{k}\right)\right\|<\frac{2}{k} ;
$$

thus

$$
\left\|\boldsymbol{x}-\frac{\boldsymbol{z}_{k}-\lambda \boldsymbol{y}_{k}}{1-\lambda}\right\|<\frac{2}{k(1-\lambda)} \quad \forall k \in \mathbb{N} .
$$

Since $\boldsymbol{x} \in \stackrel{\circ}{C}$, there exists $N>0$ such that $B\left(\boldsymbol{x}, \frac{2}{(1-\lambda) N}\right) \subseteq C$; thus $\frac{\boldsymbol{z}_{k}-\lambda \boldsymbol{y}_{k}}{1-\lambda} \in C$ whenever $k \geqslant N$. By the convexity of C,

$$
\boldsymbol{z}_{k}=(1-\lambda) \frac{\boldsymbol{z}_{k}-\lambda \boldsymbol{y}_{k}}{1-\lambda}+\lambda \boldsymbol{y}_{k} \in C,
$$

a contradiction.
3. Let $\boldsymbol{x}, \boldsymbol{y} \in \dot{C}$. By the line segment principle, $(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y} \in \dot{C}$ for all $\lambda \in(0,1)$ (since $\dot{C} \subseteq \bar{C}$ so that $y \in \bar{C})$. This further implies that $(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y} \in \dot{C}$ for all $\lambda \in[0,1]$ since $\boldsymbol{x}, \boldsymbol{y} \in \dot{C}$; thus \dot{C} is convex.
4. It suffices to show that $\operatorname{cl}(\stackrel{\circ}{C}) \supseteq \operatorname{cl}(C)$. Let $\boldsymbol{x} \in \operatorname{cl}(C)$. Pick any $\boldsymbol{y} \in \dot{C}$. By the line segment principle,

$$
\boldsymbol{x}_{k} \equiv\left(1-\frac{1}{k}\right) \boldsymbol{x}+\frac{1}{k} \boldsymbol{y} \in \dot{C} \quad \forall k \geqslant 2 .
$$

Since $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}$ as $k \rightarrow \infty$, we find that $\boldsymbol{x} \in \operatorname{cl}(\dot{C})$.
5. It suffices to show that $\operatorname{int}(\bar{C}) \subseteq \operatorname{int}(C)$. Let $\boldsymbol{x} \in \operatorname{int}(\bar{C})$. Then there exists $\varepsilon>0$ such that $B(\boldsymbol{x}, \varepsilon) \subseteq \bar{C}$. Let $\boldsymbol{y} \in \operatorname{int}(C)$. If $\boldsymbol{y}=\boldsymbol{x}$, then $\boldsymbol{x} \in \operatorname{int}(C)$. If $\boldsymbol{y} \neq \boldsymbol{x}$, define $\boldsymbol{z}=\boldsymbol{x}+\alpha(\boldsymbol{x}-\boldsymbol{y})$, where

$$
\alpha=\frac{\varepsilon}{2\|\boldsymbol{x}-\boldsymbol{y}\|} .
$$

Then $\|\boldsymbol{x}-\boldsymbol{z}\|=\frac{\varepsilon}{2}$; thus $\boldsymbol{z} \in B(\boldsymbol{x}, \varepsilon)$ which further implies that $\boldsymbol{z} \in \bar{C}$. The line segment principle implies that $(1-\lambda) \boldsymbol{y}+\lambda \boldsymbol{z} \in \dot{C}$ for all $\lambda \in(0,1)$. Taking $\lambda=\frac{1}{1+\alpha}$, we find that

$$
(1-\lambda) \boldsymbol{y}+\lambda \boldsymbol{z}=\frac{\alpha}{1+\alpha} \boldsymbol{y}+\frac{1}{1+\alpha}(\boldsymbol{x}+\alpha(\boldsymbol{x}-\boldsymbol{y}))=\boldsymbol{x}
$$

which shows that $\boldsymbol{x} \in \operatorname{int}(C)$.

Problem 12. Let $(\mathcal{V},\|\cdot\|)$ be a normed vector space. Show that for all $\boldsymbol{x} \in \mathcal{V}$ and $r>0$,

$$
\operatorname{int}(B[\boldsymbol{x}, r])=B(\boldsymbol{x}, r)
$$

Proof. Let $\boldsymbol{y} \in \mathcal{V}$ such that $\|\boldsymbol{x}-\boldsymbol{y}\|=r$. Then $\boldsymbol{x}+\lambda(\boldsymbol{y}-\boldsymbol{x}) \in B[\boldsymbol{x}, r]^{c}$ for all $|\lambda|>1$. In particular, $\boldsymbol{y}_{n} \equiv \boldsymbol{x}+\left(1+\frac{1}{n}\right)(\boldsymbol{y}-\boldsymbol{x}) \in B[\boldsymbol{x}, r]^{\complement}$ for all $n \in \mathbb{N}$. Moreover,

$$
\left\|\boldsymbol{y}_{n}-\boldsymbol{y}\right\|=\frac{1}{n}\|\boldsymbol{x}-\boldsymbol{y}\|=\frac{r}{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Therefore, $\lim _{n \rightarrow \infty} \boldsymbol{y}_{n}=\boldsymbol{y}$ which implies that $\boldsymbol{y} \in \partial B[\boldsymbol{x}, r]$ (since $\boldsymbol{y} \in B[\boldsymbol{x}, r]$ and \boldsymbol{y} is the limit of a sequence from $B[\boldsymbol{x}, r]^{c}$); thus

$$
\{\boldsymbol{y} \in \mathcal{V} \mid\|\boldsymbol{x}-\boldsymbol{y}\|=r\} \subseteq \partial B[\boldsymbol{x}, r] .
$$

On the other hand, $B(\boldsymbol{x}, r)$ is open and $B[\boldsymbol{x}, r]=B(\boldsymbol{x}, r) \cup\{\boldsymbol{y} \in \mathcal{V} \mid\|\boldsymbol{x}-\boldsymbol{y}\|=r\}$. Therefore, $B(x, r)$ is the largest open set contained inside $B[\boldsymbol{x}, r]$; thus $B(\boldsymbol{x}, r)=\operatorname{int}(B[\boldsymbol{x}, r])$.

Problem 13. Let $\mathcal{M}_{n \times n}$ denote the collection of all $n \times n$ square real matrices, and $\left(\mathcal{M}_{n \times n},\|\cdot\|_{p, q}\right)$ be a normed space with norm $\|\cdot\|_{p, q}$ given in Problem 4 of Exercise 6. Show that the set

$$
\mathrm{GL}(n) \equiv\left\{A \in \mathcal{M}_{n \times n} \mid \operatorname{det}(A) \neq 0\right\}
$$

is an open set in $\mathcal{M}_{n \times n}$. The set $\mathrm{GL}(n)$ is called the general linear group.
Proof. Let $A \in \mathrm{GL}(n)$ be given. Then $A^{-1} \in \mathcal{M}_{n \times n}$ exists; thus

$$
\left\|A^{-1} \boldsymbol{x}\right\|_{2} \leqslant\left\|A^{-1}\right\|_{2,2}\|\boldsymbol{x}\|_{2} \quad \forall \boldsymbol{x} \in \mathbb{R}^{n}
$$

which, using the fact that $A: \mathbb{R}^{n} \frac{1-1}{{ }_{\text {onto }}} \mathbb{R}^{n}$, implies that

$$
\frac{1}{\left\|A^{-1}\right\|_{2,2}}\|\boldsymbol{x}\|_{2} \leqslant\|A \boldsymbol{x}\|_{2} \quad \forall \boldsymbol{x} \in \mathbb{R}^{n}
$$

Let $r=\frac{1}{\left\|A^{-1}\right\|_{2,2}}$. For $B \in B(A, r)$, we have $\|A-B\|_{2,2}<r$; thus for each $\boldsymbol{x} \in \mathbb{R}^{n}$,

$$
r\|\boldsymbol{x}\|_{2}=\frac{1}{\left\|A^{-1}\right\|_{2,2}}\|\boldsymbol{x}\|_{2} \leqslant\|A \boldsymbol{x}\|_{\mathbb{R}^{n}} \leqslant\|(A-B) \boldsymbol{x}\|_{2}+\|B \boldsymbol{x}\|_{2} \leqslant\|A-B\|_{2,2}\|\boldsymbol{x}\|_{\mathbb{R}^{n}}+\|B \boldsymbol{x}\|_{2}
$$

which further implies that

$$
\|B \boldsymbol{x}\|_{2} \geqslant\left(r-\|A-B\|_{2,2}\right)\|\boldsymbol{x}\|_{2} \quad \forall \boldsymbol{x} \in \mathbb{R}^{n}
$$

Therefore, $B \boldsymbol{x}=\mathbf{0}$ if and only if $\boldsymbol{x}=\mathbf{0}$ which shows that B is invertible; thus we established that

$$
\text { for each } A \in \operatorname{GL}(n) \text {, there exists } r=\frac{1}{\left\|A^{-1}\right\|_{2,2}}>0 \text { such that } B(A, r) \subseteq \operatorname{GL}(n) \text {. }
$$

This shows that $\mathrm{GL}(n)$ is open.

Problem 14. Show that every open set in \mathbb{R} is the union of at most countable collection of disjoint open intervals; that is, if $U \subseteq \mathbb{R}$ is open, then

$$
U=\bigcup_{k \in \mathcal{I}}\left(a_{k}, b_{k}\right),
$$

where \mathcal{I} is countable, and $\left(a_{k}, b_{k}\right) \cap\left(a_{\ell}, b_{\ell}\right)=\varnothing$ if $k \neq \ell$.
Hint: For each point $x \in U$, define $L_{x}=\{y \in \mathbb{R} \mid(y, x) \subseteq U\}$ and $R_{x}=\{y \in \mathbb{R} \mid(x, y) \subseteq U\}$. Define $I_{x}=\left(\inf L_{x}, \sup R_{x}\right)$. Show that $I_{x}=I_{y}$ if $(x, y) \in U$ and if $(x, y) \nsubseteq U$ then $I_{x} \cap I_{y}=\varnothing$

Proof. As suggested in the hint, for each point $x \in U$ we define $L_{x}=\{y \in \mathbb{R} \mid(y, x) \subseteq U\}$ and $R_{x}=\{y \in \mathbb{R} \mid(x, y) \subseteq U\}$. We note that $a \equiv \inf L_{x} \notin U$ since if $a \in U$, by the openness of U there exists $r>0$ such that $(a-r, a+r) \subseteq U$ which implies that $(a-r, x) \subseteq U$ so that $a-r \in L_{x}$, a contradiction to the fact that $a=\inf L_{x}$. Similarly, $\sup R_{x} \notin U$. Therefore, $I_{x}=\left(\inf L_{x}, \sup L_{x}\right)$ is the maximal connected subset of U containing x.

Suppose that $x, y \in U$ and $(x, y) \subseteq U$. If $z \in L_{x}$ (so $\left.(z, x) \subseteq U\right)$, by the fact that $(z, y)=$ $(z, x) \cup\{x\} \cup(x, y)$, we find that $z \in L_{y}$. Therefore, $L_{x} \subseteq L_{y}$ which implies that $\inf L_{y} \leqslant \inf L_{x}$. Moreover, if $\inf L_{y}<\inf L_{x}$, then there exists $z \in L_{y}$ such that $\inf L_{y} \leqslant z<\inf L_{x}$. Since $z \in L_{y}$, $(z, y) \subseteq U$; thus $(z, x) \subseteq U$ which shows that $z \in L_{x}$, a contradiction to that $z<\inf L_{x}$. Therefore, $\inf L_{y}=\inf L_{x}$. Similarly, $\sup R_{y}=\sup R_{x}$ so we conclude that $I_{x}=I_{y}$.

On the other hand, if that $x, y \in U$ but $(x, y) \nsubseteq U$, then there exists $x<z<y$ with $z \notin U$ which results in that $\sup R_{x} \leqslant z \leqslant \inf L_{y}$ so that $I_{x} \cap I_{y}=\varnothing$. Therefore, we establish that

1. if $x, y \in U$ and $(x, y) \subseteq U$, then $I_{x}=I_{y}$.
2. if $x, y \in U$ and $(x, y) \nsubseteq U$, then $I_{x} \cap I_{y}=\varnothing$.

This implies that U is the union of disjoint open intervals. Since every such open interval contains a rational number, we can denote each such open interval as I_{k}, where k belongs to a countable index set \mathcal{I}. Write $I_{k}=\left(a_{k}, b_{k}\right)$, then $U=\bigcup_{k \in \mathcal{I}}\left(a_{k}, b_{k}\right)$.

Problem 15. Let (M, d) be a metric space. A set $A \subseteq M$ is said to be perfect if $A=A^{\prime}$ (so that there is no isolated points). The Cantor set is constructed by the following procedure: let $E_{0}=[0,1]$. Remove the segment $\left(\frac{1}{3}, \frac{2}{3}\right)$, and let E_{1} be the union of the intervals

$$
\left[0, \frac{1}{3}\right],\left[\frac{2}{3}, 1\right] .
$$

Remove the middle thirds of these intervals, and let E_{2} be the union of the intervals

$$
\left[0, \frac{1}{9}\right],\left[\frac{2}{9}, \frac{3}{9}\right],\left[\frac{6}{9}, \frac{7}{9}\right],\left[\frac{8}{9}, 1\right] .
$$

Continuing in this way, we obtain a sequence of closed set E_{k} such that
(a) $E_{1} \supseteq E_{2} \supseteq E_{2} \supseteq \cdots ;$
（b）E_{n} is the union of 2^{n} intervals，each of length 3^{-n} ．
The set $C=\bigcap_{n=1}^{\infty} E_{n}$ is called the Cantor set．
1．Show that C is a perfect set．
2．Show that C is uncountable．
3．Find $\operatorname{int}(C)$ ．
Proof．1．Let $x \in C$ ．Then $x \in E_{N}$ for some $N \in \mathbb{N}$ ．For each $n \in \mathbb{N}, E_{n}$ is the union of disjoint closed intervals with length $\frac{1}{3^{n}}$ ，and ∂E_{n} consists of the end－points of these disjoint closed intervals whose union is E_{n} ．Therefore，there exists $x_{n} \in \partial E_{N+n-1} \backslash\{x\}$ such that $\left|x_{n}-x\right|<\frac{1}{3^{N-1+n}}$ ． Since $\partial E_{n} \subseteq C$ for each $n \in \mathbb{N}$ ，we find that $\left\{x_{n}\right\}_{n=1}^{\infty} \in C \backslash\{x\}$ ．Moreover， $\lim _{n \rightarrow \infty} x_{n}=x$ ；thus $x \in C^{\prime}$ which shows $C \subseteq C^{\prime}$ ．Since C is the intersection of closed sets，C is closed；thus

$$
C \subseteq C^{\prime} \subseteq \bar{C}=C
$$

so we establish that $C^{\prime}=C$ ．
2．For $x \in[0,1]$ ，write x in ternary expansion（三進位展開）；that is，

$$
x=0 . d_{1} d_{2} d_{3} \cdots \cdots .
$$

Here we note that repeated 2＇s are chosen by preference over terminating decimals．For example， we write $\frac{1}{3}$ as $0.02222 \cdots$ instead of 0.1 ．Define

$$
A=\left\{x=0 . d_{1} d_{2} d_{3} \cdots \mid d_{j} \in\{0,2\} \text { for all } j \in \mathbb{N}\right\} .
$$

Note each point in ∂E_{n} belongs to A ；thus $A \subseteq C$ ．On the other hand，A has a one－to－one correspondence with $[0,1]\left(x=0 . d_{1} d_{2} \cdots \in A \Leftrightarrow y=0 \cdot \frac{d_{1}}{2} \frac{d_{2}}{2} \cdots \in[0,1]\right.$ ，where y is expressed in binary expansion（二進位展開）with repeated 1＇s instead of terminating decimals）．Since $[0,1]$ is uncountable，A is uncountable；thus C is uncountable．

3．If $\operatorname{int}(C)$ is non－empty，then by the fact that $\operatorname{int}(C)$ is open in $(R,|\cdot|)$ ，by Problem 7 the Cantor set C contains at least one interval (x, y) ．Note that there exists $N>0$ such that $|x-y|<\frac{1}{3^{n}}$ for all $n \geqslant N$ ．Since the length of each interval in E_{n} has length $\frac{1}{3^{n}}$ ，we find that if $n \geqslant N$ ，the interval (x, y) is not contained in any interval of E_{n} ．In other words，there must be $z \in(x, y)$ such that $z \in E_{n}^{\complement}$ which shows that $(x, y) \nsubseteq \bigcap_{n=1}^{\infty} E_{n}$ ．Therefore， $\operatorname{int}(C)=\varnothing$ ．

